首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The aim of this study was to investigate the expression and significance of neuroligins in myenteric cells of Cajal (ICC-MY) in Hirschsprung’s disease (HSCR).

Methods

Longitudinal muscle with adherent myenteric plexus (LMMP) from surgical excision waste colon of HSCR children were prepared by peeling off the mucous layer, sub-mucosal layer and circular muscle. Neuroligins, c-Kit (c-Kit-immunoreactivity representing ICC) and their relationship were assessed by double labeling immunofluorescence staining. ICC-MY were dissociated and cultured from LMMP by enzymolysis method, and were purified and analyzed using a combination of magnetic-activated cell sorting (MACS) and flow cytometry (FCM). Western-blot analysis was applied to compare and evaluate the expression levels of neuroligins in ICC-MY which were dissociated from different segments of HSCR (ganglionic colonic segment, transitional colonic segment and aganglionic colonic segment).

Results

Neuroligins and c-Kit were expressed on the same cells (ICC-MY); ICC-MY were dissociated, cultured and purified. For HSCR, neuroligins were expressed significantly in ICC-MY from ganglionic colonic segments, moderately in those from transitional colonic segments and down-regulated significantly in those from aganglionic colonic segments.

Conclusions

Neuroligins were expressed in ICC-MY of human beings, and the expression varies from different segments of HSCR. This abnormal expression might play an important role in the pathogenesis of this disease through affecting the synaptic function of ICC-MY.  相似文献   

2.
Lieber T  Kidd S  Struhl G 《Neuron》2011,70(3):468-481
Neurexin and neuroligin, which undergo heterophilic interactions with each other at the synapse, are mutated in some patients with autism spectrum disorder, a set of disorders characterized by deficits in social and emotional learning. We have explored the role of neurexin and neuroligin at sensory-to-motor neuron synapses of the gill-withdrawal reflex in Aplysia, which undergoes sensitization, a simple form of learned fear. We find that depleting neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron abolishes both long-term facilitation and the associated presynaptic growth induced by repeated pulses of serotonin. Moreover, introduction into the motor neuron of the R451C mutation of neuroligin-3 linked to autism spectrum disorder blocks both intermediate-term and long-term facilitation. Our results suggest that activity-dependent regulation of the neurexin-neuroligin interaction may govern transsynaptic signaling required for the storage of long-term memory, including emotional memory that may be impaired in autism spectrum disorder.  相似文献   

3.
The goal of this study was to investigate the expression level of neuroligin-2 in different colon tissue segments of children with Hirschsprung’s disease (HSCR) and the correlative clinical significance of serum Gamma-Aminobutyric Acid (serum GABA) in HSCR. Neuroligin-2 was assessed by Immunohistochemistry staining method on routine paraffin section from different colon tissue segments of HSCR (ganglionic colonic segment, transitional colonic segment and aganglionic colonic segment). Western-blot analysis and real-time fluorescence quantitative PCR(qRT-PCR) were applied to compare and evaluate the expression levels of neuroligin-2 from three segments of HSCR, and we used Enzyme-linked Immunosorbent Assay (ELISA) method to detect and compare the serum GABA between HSCR and non-HSCR. Immunohistochemistry staining demonstrated that intensive neuroligin-2 staining was detected in the ganglion cells in the ganglionic colonic and transitional colonic segments from the HSCR children; however, neuroligin-2 staining was down-regulated significantly in the aganglionic colonic segments. The expression levels of neuroligin-2 mRNA and protein in the aganglionic colonic segment were decreased compared to the ganglionic colonic segment and transitional colonic segment (P < 0.05). And the level of serum GABA was significantly higher in HSCR than that in non-HSCR. The expression of neuroligin-2 varies from different segments of HSCR. The down-regulation of neuroligin-2 in aganglionic colonic segments may be correlated with the excessive intestine contraction and further result in HSCR. The over-expression of serum GABA may be considered as a new diagnostic method of HSCR.  相似文献   

4.
5.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   

6.
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Iβ and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Iβ and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Iβ is largely (96%) pre-synaptic. Thus, neurexin Iβ and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.  相似文献   

7.
By means of retrograde transport of the fluorescent marker primulin the initial part of the sympathetic innervation of the myenteric nervous plexus of the descending colon has been characterized in cats and guinea pigs. When primulin is injected into the myenteric nervous plexus, marked neurons are revealed in the caudal mesenteric ganglion, in the celiac plexus ganglia, in the sympathetic trunk ganglia. The marked nervous populations of the extramural sympathetic ganglia differ in their form, size, number of neurons and their distribution.  相似文献   

8.
The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.  相似文献   

9.
N Gao  J Luo  K Uray  A Qian  S Yin  G Wang  X Wang  Y Xia  JD Wood  H Hu 《PloS one》2012,7(8):e44426

Background

Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species.

Methodology/Principal Findings

CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue.

Conclusion

ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.  相似文献   

10.
The incidence of constipation increases with age. This has been linked to age-related changes in the structure and function of myenteric neurons regulating intestinal motility; however, the role of submucous neurons is unknown. The aim of this study was to determine the effect of maturation on cholinergic receptor-induced ion secretion in guinea pig colon. Changes in the short-circuit current (Isc) and tissue conductance were monitored in muscle-stripped colonic segments from young (3-4-month-old) and mature (12-15-month-old) male guinea pigs. Thirty-one percent of colonic segments from young guinea pigs exhibited ongoing neural activity, which was absent in mature animals. Baseline Isc was significantly higher only in young guinea pig tissues with ongoing activity. Tissue conductance was similar in all tissues. Electrical field stimulation caused a biphasic increase in the Isc. At 15 V/10 Hz, only Peak 1 was attenuated, whereas both peaks were reduced in mature guinea pigs at 10 V/5Hz. 1,1, dimethyl-4-phenyl-piperazinium(DMPP)-induced ion secretion was blunted in mature guinea pigs. Atropine reduced the 1,1, dimethyl-4-phenyl-piperazinium response only in young guinea pigs. Carbachol-induced ion secretion was similar in tissues from both age groups. In conclusion, nicotinic receptor-induced secretion mediated by both cholinergic and noncholinergic secretomotor neurons was blunted; however, epithelial muscarinic receptor activity was unaltered during maturation.  相似文献   

11.
The Making of Neurexins   总被引:14,自引:2,他引:12  
  相似文献   

12.
The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.  相似文献   

13.
14.
Neurexins are cell adhesion proteins that interact with neuroligin and other ligands at the synapse. In humans, mutations in neurexin or neuroligin genes have been associated with autism and other mental disorders. The human neurexin and neuroligin genes are orthologous to the Caenorhabditis elegans genes nrx‐1 and nlg‐1, respectively. Here we show that nrx‐1‐deficient mutants are defective in exploratory capacity, sinusoidal postural movements and gentle touch response. Interestingly, the exploratory behavioral phenotype observed in nrx‐1 mutants was markedly different to nlg‐1‐deficient mutants; thus, while the former had a ‘hyper‐reversal’ phenotype increasing the number of changes of direction with respect to the wild‐type strain, the nlg‐1 mutants presented a ‘hypo‐reversal’ phenotype. On the other hand, the nrx‐1‐ and nlg‐1‐defective mutants showed similar abnormal sinusoidal postural movement phenotypes. The response of these mutant strains to aldicarb (acetylcholinesterase inhibitor), levamisole (ACh agonist) and pentylenetetrazole [gamma‐aminobutyric (GABA) receptor antagonist], suggested that the varying behavioral phenotypes were caused by defects in ACh and/or GABA inputs. The defective behavioral phenotypes of nrx‐1‐deficient mutants were rescued in transgenic strains expressing either human alpha‐ or beta‐NRXN‐1 isoforms under the worm nrx‐1 promoter. A previous report had shown that human and rat neuroligins were functional in C. elegans. Together, these results suggest that the functional mechanism underpinning both neuroligin and neurexin in the nematode are comparable to human. In this sense the nematode might constitute a simple in vivo model for understanding basic mechanisms involved in neurological diseases for which neuroligin and neurexin are implicated in having a role.  相似文献   

15.
The effects of ZK 36374, a prostacyclin analogue and UK 38485, a thromboxane synthetase inhibitor were studied in guinea pigs after performing mesenteric arterial occlusion. In this study, while ZK 36374 significantly lowered the alkaline phosphatase and creatine phosphokinase values two hours after mesenteric arterial occlusion when compared with the control group (p less than 0.005), UK 38485 did not induce any change. In guinea pigs, when given together, ZK 36374 and UK 38485 lowered the enzyme levels to preligation values and the difference was nonsignificant (p greater than 0.1). The histopathologic investigation of the small intestine after giving ZK 36374 and UK 38345 together revealed minimal changes. These findings stress the importance of preserving the PGI2 levels in the PGI2/TXA2 ratio in preventing the increase of lysosomal enzyme levels and histopathologic changes after mesenteric arterial occlusion in guinea pigs.  相似文献   

16.

Background

Neurexin is a synaptic cell adhesion protein critical for synapse formation and function. Mutations in neurexin and neurexin-interacting proteins have been implicated in several neurological diseases. Previous studies have described Drosophila neurexin mutant phenotypes in third instar larvae and adults. However, the expression and function of Drosophila neurexin early in synapse development, when neurexin function is thought to be most important, has not been described.

Methodology/Principal Findings

We use a variety of techniques, including immunohistochemistry, electron microscopy, in situ hybridization, and electrophysiology, to characterize neurexin expression and phenotypes in embryonic Drosophila neuromuscular junctions (NMJs). Our results surprisingly suggest that neurexin in embryos is present both pre and postsynaptically. Presynaptic neurexin promotes presynaptic active zone formation and neurotransmitter release, but along with postsynaptic neurexin, also suppresses formation of ectopic glutamate receptor clusters. Interestingly, we find that loss of neurexin only affects receptors containing the subunit GluRIIA.

Conclusions/Significance

Our study extends previous results and provides important detail regarding the role of neurexin in Drosophila glutamate receptor abundance. The possibility that neurexin is present postsynaptically raises new hypotheses regarding neurexin function in synapses, and our results provide new insights into the role of neurexin in synapse development.  相似文献   

17.
Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of enteric ganglia. There are more than 15 genes identified as contributed to HSCR by family‐based or population‐based approaches. However, these findings were not fulfilled to explain the heritability of most sporadic cases. In this study, using 1470 HSCR and 1473 control subjects in South Chinese population, we replicated two variants in NRG1 (rs16879552, P = 1.05E‐04 and rs7835688, P = 1.19E‐07), and further clarified the two replicated SNPs were more essential for patients with short‐segment aganglionosis (SHSCR) (P = 2.37E‐05). We also tried to replicate the most prominent signal (rs7785360) in AUTS2, which was a potential susceptibility gene with HSCR. In our results, in terms of individual association, marginal effect was observed to affect the HSCR patients following recessive model (P = 0.089). Noteworthy, significant intergenic synergistic effect between rs16879552 (NRG1) and rs7785360 (AUTS2) was identified through cross‐validation by logistic regression (P = 2.45E‐03, OR = 1.53) and multifactor dimensionality reduction (MDR, P < 0.0001, OR = 1.77). Significant correlation was observed between expression of these two genes in the normal segments of the colons (P = 0.018), together with differential expression of these genes between aganglionic colonic segments and normal colonic segments of the HSCR patients (P value for AUTS2 <0.0001, P value for NRG1 = 0.0243). Although functional evaluation is required, we supply new evidence for the NRG1 to HSCR and raised up a new susceptibility gene AUTS2 to a specific symptom for the disease.  相似文献   

18.
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.  相似文献   

19.

Background

The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprung''s disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS.

Principal Findings

In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function.

Conclusions

Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR.  相似文献   

20.
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号