首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel expression systems for the development of whole-cell biocatalysts were generated. Their novelty consists both in the host, Pseudomonas putida, and in the ability to auto-induce the expression of genes of interest at the exhaustion of the carbon source used for the biomass growth. The auto-induction relies on new expression vectors developed in this study and based on the activator TouR from Pseudomonas sp. OX1, which was shown to mediate the activation of target promoters in an effector-independent growth-phase-dependent manner when the carbon source is exhausted at the onset of the stationary phase. We validated the suitability of these expression systems through the production of (S)-styrene oxide by the styrene monooxygenase from Pseudomonas fluorescens ST. The yields of epoxides produced by these biocatalysts in flask experiments showed to be as efficient as those currently available based on inducible Escherichia coli systems. In addition, a larger scale of biomass production showed no reduction of biocatalysis efficiency. Therefore, the systems developed in this study constitute a valid alternative to current expression systems to use in bioconversion processes.  相似文献   

2.
Despite the first report on the bacterial display of a recombinant peptide appeared almost 30 years ago, industrial application of cells with surface-displayed enzymes is still limited. To display an enzyme on the surface of a living cell bears several advantages. First of all, neither the substrate nor the product of the enzymatic reaction needs to cross a membrane barrier. Second, the enzyme being linked to the cell can be separated from the reaction mixture and hence the product by simple centrifugation. Transfer to a new substrate preparation results in multiple cycles of enzymatic conversion. Finally, the anchoring in a matrix, in this case, the cell envelope stabilizes the enzyme and makes it less accessible to proteolytic degradation and material adsorption resulting in continuous higher activities. These advantages in common need to balance some disadvantages before this application can be taken into account for industrial processes, e.g., the exclusion of the enzyme from the cellular metabolome and hence from redox factors or other co-factors that need to be supplied. Therefore, this digest describes the different systems in Gram-positive and Gram-negative bacteria that have been used for the surface display of enzymes so far and focuses on examples among these which are suitable for industrial purposes or for the production of valuable resources, not least in order to encourage a broader application of whole-cell biocatalysts with surface-displayed enzymes.  相似文献   

3.
The efficiency of biocatalysis is often affected by an insufficient supply and regeneration of cofactors and redox equivalents. To alleviate this shortcoming, a cofactor self-sufficient system was developed for enhanced production of 2-phenylethanol (2-PE) in E. coli. A “bridge” between the amino acid and its corresponding alcohol was designed in the system using glutamate dehydrogenase. By coupling glutamate dehydrogenase with transaminase and alcohol dehydrogenase, the cosubstrate (2-oxoglutarate) and redox equivalents (NAD(P)H) were regenerated simultaneously, so that no external cofactor or redox source was required. Thus, a cofactor self-sufficient system was developed, which improved the biocatalyst efficiency 3.8-fold. The ammonium generated in this process was removed using zeolite, which further improved the biosynthetic efficiency and resulted in a cleaner system. To the best of our knowledge, this system yielded the highest titer of 2-PE ever obtained in E. coli. Additionally, the wider applicability of this self-sufficient strategy was demonstrated in the production of D-phenyllactic acid. This study thus offers a new method to resolve the cofactor/redox imbalance problem and demonstrates the feasibility of the cofactor self-sufficient strategy for enhanced production of diverse chemicals.  相似文献   

4.
Gene therapy is a promising and rapidly developing field of modern medicine and is expected to improve or even cure the diseases that are incurable with classical therapies. The logics of the development of gene therapy in the nearest future will require the systems wherein a regulation is possible for expression of therapeutic genes. The review considers the currently available regulated gene therapeutic systems, which can be divided into two main classes. One includes the systems wherein external inducers are used to trigger therapeutic gene expression. Systems of the other class are autoregulated and function without an external inducer. The most important first-class expression systems are based on the regulation by tetracycline, rapamycin derivative-induced dimerization, steroid hormones, regulatory RNAs, and physical factors. The most important systems of the second class are regulated by oxygen or glucose levels.  相似文献   

5.
Ursodeoxycholic acid is an important pharmaceutical so far chemically synthesized from cholic acid. Various biocatalytic alternatives have already been discussed with hydroxysteroid dehydrogenases (HSDH) playing a crucial role. Several whole-cell biocatalysts based on a 7α-HSDH-knockout strain of Escherichia coli overexpressing a recently identified 7β-HSDH from Collinsella aerofaciens and a NAD(P)-bispecific formate dehydrogenase mutant from Mycobacterium vaccae for internal cofactor regeneration were designed and characterized. A strong pH dependence of the whole-cell bioreduction of dehydrocholic acid to 3,12-diketo-ursodeoxycholic acid was observed with the selected recombinant E. coli strain. In the optimal, slightly acidic pH range dehydrocholic acid is partly undissolved and forms a suspension in the aqueous solution. The batch process was optimized making use of a second-order polynomial to estimate conversion as function of initial pH, initial dehydrocholic acid concentration, and initial formate concentration. Complete conversion of 72?mM dehydrocholic acid was thus made possible at pH?6.4 in a whole-cell batch process within a process time of 1?h without cofactor addition. Finally, a NADH-dependent 3α-HSDH from Comamonas testosteroni was expressed additionally in the E. coli production strain overexpressing the 7β-HSDH and the NAD(P)-bispecific formate dehydrogenase mutant. It was shown that this novel whole-cell biocatalyst was able to convert 50?mM dehydrocholic acid directly to 12-keto-ursodeoxycholic acid with the formation of only small amounts of intermediate products. This approach may be an efficient process alternative which avoids the costly chemical epimerization at C-7 in the production of ursodeoxycholic acid.  相似文献   

6.
Lipopolysaccharide is one of the major constituents of the Gram-negative bacterial outer membrane and is, due to its endotoxic activity, responsible for the relatively high reactogenicity of whole-cell vaccines. In addition, lipopolysaccharide has strong immune stimulating properties, which makes it, potentially, an interesting vaccine component. In a previous study, we have shown that expression of two lipopolysaccharide-modifying enzymes, i.e., PagP and PagL, modulates the endotoxic activity of the Gram-negative bacterium Bordetella pertussis, the causative agent of whooping cough. To assess the consequences of PagP and PagL expression on the efficacy and reactogenicity of whole-cell pertussis vaccines, we have immunised mice and challenged them intranasally with wild-type B. pertussis. Vaccine efficacy, B. pertussis-specific antibody responses, and cytokine profiles were evaluated. The results show that expression of PagL, but not of PagP, significantly increases vaccine efficacy without altering vaccine reactogenicity. Therefore, PagL-expressing B. pertussis strains may form a basis for the development of a new and safer whole-cell pertussis vaccine, as higher vaccine efficacies may allow a reduced vaccine dosage. These data show, for the first time, that lipopolysaccharide composition is an important determinant for the efficacy of whole-cell pertussis vaccines.  相似文献   

7.
Systematic screening of single-gene knockout collection of Escherichia coli BW25113 (the Keio collection) was performed to select mutants that could enhance the deethylation of 7-ethoxycoumarin catalyzed by CYP154A1. After 96-well plate high-throughput screening followed by test tube assays, four mutants (ΔcpxA, ΔgcvR, ΔglnL, and an unknown-gene-deleted one (Δuk)) were able to increase the CYP154A1 activity by approximately 1.4–1.7 times compared with that of the control strain. When new mutants were constructed by disrupting individually the cpxA, gcvR, glnL, and uk genes in E. coli BW25113, three of them (ΔcpxA, ΔgcvR, and ΔglnL) showed high levels of CYP154A1 activity. However, the uk-disruptant failed to enhance the CYP154A1 activity, suggesting that the high CYP154A1 activity of the Δuk mutant in the Keio collection was due to a spontaneous mutation in the chromosome. In-frame deletion mutants of ΔcpxA, ΔgcvR, and ΔglnL also exhibited high enzyme activity, and complementation of these mutations could decrease CYP154A1 activity. These results indicated that the enhancement of the enzyme activity was not caused by polar effects on their neighbor genes. To our knowledge, this is the first report on a genome-wide screening of the genes for deletion to improve the activity of a recombinant whole-cell biocatalyst.  相似文献   

8.
During the last decades a large number of flavin-dependent monooxygenases have been isolated and studied. This has revealed that flavoprotein monooxygenases are able to catalyze a remarkable wide variety of oxidative reactions such as regioselective hydroxylations and enantioselective sulfoxidations. These oxidation reactions are often difficult, if not impossible, to be achieved using chemical approaches. Analysis of the available genome sequences has indicated that many more flavoprotein monooxygenases exist and await biocatalytic exploration. Based on the known biochemical properties of a number of flavoprotein monooxygenases and sequence and structural analyses, flavoprotein monooxygenases can be classified into six distinct flavoprotein monooxygenase subclasses. This review provides an inventory of known flavoprotein monooxygenases belonging to these different enzyme subclasses. Furthermore, the biocatalytic potential of a selected number of flavoprotein monooxygenases is highlighted.  相似文献   

9.
10.
11.
Protein kinases are important signaling molecules that are known constituents of cellular pathways critical for normal cellular growth and development. We have recently identified a new protein kinase, p58, which contains a large domain that is highly homologous to the cell division control p34cdc2 protein kinase. This new cell division control-related protein kinase was originally identified as a component of semipurified galactosyltransferase; thus, it has been denoted galactosyltransferase-associated protein kinase. In vitro, this protein kinase has been shown to phosphorylate a number of substrates, including histone H1, casein, and galactosyltransferase. In vivo, we have found that this protein kinase affects galactosyltransferase enzyme activity and that it is apparently involved in some aspect of normal cell cycle regulation. In this report, we find that the p58 gene is evolutionarily well conserved and expressed ubiquitously, but to varying extents, in adult tissues. In developmentally staged embryos, p58 expression was elevated early in embryogenesis and then decreased dramatically. In the murine submandibular gland, p58 expression was elevated between day 14 and day 16 post coitus. Expression in the submandibular gland appeared to parallel the proliferation and differentiation of specific cell types as judged by in situ hybridization. These studies indicate that the p58 protein kinase may have a critical function during normal embryonic development and that this protein kinase continues to be expressed in differentiated adult tissues.  相似文献   

12.
13.
It is well known that washing whole-cells containing enzyme activities after fermentation, but prior to biocatalysis can improve their activity in the subsequent reaction. In this paper, we quantify the impact of both the fermentation media and cell washing on the performance of whole-cell biocatalysis. The results are illustrated using a recombinant monoamine oxidase (expressed in Escherichia coli, used in resting state) for the oxidative desymmetrization of 3-azabicyclo[3,3,0]octane. It was shown that the need for washing biocatalyst prior to use in a reaction is dependent upon growth medium. Unlike cells grown in LB medium, washing of the cells was essential for cells grown on TB medium. With TB media, washing the cells improved the final conversion by approximately a factor of two. Additionally, over 50-fold improvement was achieved in initial activity. A potential reason for this improvement in activity was identified to be the increase in transfer of substrates across the cell membrane as a result of cell washing.  相似文献   

14.
The Center of Industrial Biotechnology (CIBT) was established in Huzhou for fine chemicals in 2006 and CIBT Shanghai was founded for bulk chemicals in 2008. CIBT is a non‐profit organization under auspices of the Shanghai Institutes for Biological Sciences, Shanghai Branch of the Chinese Academy of Sciences (CAS) and Huzhou Municipal Government. CIBT is affiliated with the CAS, which enables it to take advantage of the rich R&D resources and support from CAS; yet CIBT operates as an independent legal entity. The goal of CIBT is to incubate industrial biotechnologies and accelerate the commercialization of these technologies with corporate partners in China.  相似文献   

15.
16.
17.
H L Holland 《Steroids》1999,64(3):178-186
Recent advances in microbial steroid hydroxylation are covered, including new biocatalysts and substrate groups and new methodologies such as the use of low-water systems, immobilised biocatalysts, genetically constructed biocatalysts and enzyme mimics. Mechanistic factors that control the regiochemistry and stereochemistry of steroid hydroxylation are also discussed.  相似文献   

18.
During early postnatal development there was an increase in the specific activity of a number of oxidative enzymes localized on the outer and inner mitochondrial membrane. The succinic oxidase complex of the inner mitochondrial membrane, whose activity in 1-day-old rats was 50% of the value in adult animals, attained the maximum on about the 10th day after birth. Activity of the choline and the proline oxidase complex, both of which are also localized in the inner mitochondrial membrane, was minimal in 1-day-old rats and went on rising after the 10th day. Rotenone-insensitive NADH-cytochrome c reductase activity, which is localized on the outer mitochondrial membrane, remained stable up to the 10th day, and rose between the 10th and the 90th day. Developmental changes in monoaminooxidase activity, which is likewise localized on the outer mitochondrial membrane, followed a similar course to the choline and proline oxidase complexes. The amount of cytochromes a+alpha3 and cytochrome b in isolated mitochondria did not alter during development. The protein spectrum of the mitochondrial particles, determined by polyacrylamide gel electrophoresis in sodium dodecyl sulphate, likewise displayed no marked changes during postnatal development. The above findings show that the metabolic functions of the mitochondria mature during development and that changes in the different enzymes have their own characteristic time course.  相似文献   

19.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

20.
The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号