首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

2.
In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4+ antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4+ T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCRβ crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high “avidity” effector and memory T cells in response to pathogen are discussed.  相似文献   

3.
The response of splenic CD4 T cells from ovalbumin (OVA)-specific T cell receptor (TCR) transgenic mice after long-term feeding of a diet containing this antigen was examined. These CD4 T cells exhibited a decreased response to OVA peptide stimulation, in terms of proliferation, interleukin-2 secretion, and CD40 ligand expression, compared to those from mice fed a control diet lacking OVA, demonstrating that oral tolerance of T cells had been induced through oral intake of the antigen. We investigated the intracellular signaling pathways, which were Ca/CN cascade and Ras/MAPK cascade, of these tolerant CD4 T cells using phorbol-12-myristate-13-acetate (PMA) and ionomycin, which are known to directly stimulate these pathways. In contrast to the decreased response to TCR stimulation by OVA peptide, it was shown that the response of splenic CD4 T cells to these reagents in the state of oral tolerance was stronger. These results suggest that splenic CD4 T cells in the state of oral tolerance have an impairment in signaling, in which signals are not transmitted from the TCR to downstream signaling pathways, and have impairments in the vicinity of TCR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
An immunodominant heat shock protein (Hsp 24) was purified from Vibrio cholerae O139 at 42 degrees C and used as an immunomodulator for studying the gut immune response. T cell clone and T cell line specific for the Hsp 24 were generated from the lymphocytes of lamina propria and intra-epithelial lymphocytes of mice orally infected with V. cholerae O139, respectively. The T cell clone was TCR alphabeta(+), CD4(+) and appeared to play an important role in the functioning of gut B-lymphocytes. The T cell line had heterogenous population of CD8+ and CD4+ cells, most of which were found to be TCR alphabeta(+) and a minor population was TCR gammadelta(+). The lymphokine profile of T cell line showed IFN-gamma to be the most abundant lymphokine followed by IL-2 and IL-4. The possible involvement of alternative pathway of activation for T cell clone was also addressed in this study. The splenocytes showed an up-regulation of their CD2 receptor expression on stimulation with the Hsp-24. The pattern of lymphokines released by splenocytes stimulated with the Hsp-24 showed no particular cell type to be responsible for mounting immune response. Thus, there is involvement of both, mucosal and peripheral arm of the immune system.  相似文献   

5.
Murine CD4+ T cells can be subdivided into naive and memory T cells based on surface phenotype, on recall response to Ag, and on differences in activation requirements. Furthermore, several studies have shown that two signals are required for CD4+ T cell activation; one signal is provided by occupancy of the TCR and the other signal is provided by the APC. In this report, analysis of naive and memory CD4 T cells, separated on the basis of CD45 isoform expression, has shown that their requirements for two signals differ. Activation of memory CD4 T cells to proliferate and secrete IL-2/IL-4 only required occupancy of the TCR complex, whereas activation of naive CD4 T cells required an APC-derived signal as well. Moreover, the signal induced by anti-CD3 antibodies differs from the signal provided by anti-V beta cross-linking of the TCR because both antibodies activate memory CD4 T cells but only anti-CD3 activates naive CD4 T cells. Together these data suggest that the consequence of stimulation through the TCR/CD3 signal complex differs between memory and naive CD4 T cells.  相似文献   

6.
Although CD28 is the principal T cell costimulatory molecule for the T cell receptor, a number of other cell surface proteins have costimulatory functions and perform specific roles in different contexts. Here we analyzed the mechanism of CD99 costimulation of the T cell receptor. Cooperation of CD99 engagement with suboptimal TCR/CD3 signals resulted in greatly enhanced CD4+ T cell proliferation. CD99 costimulation also led to elevated expression of CD25 and GM1 on the CD4+ T cell surface within 3 days. In Jurkat TAg cells, CD99 costimulation led to increased apoptosis compared to stimulation with CD3 or CD99 alone. CD99 costimulation also augmented activation of MAP kinases, especially of JNK, and increased AP-1 activation was also observed using a luciferase reporter assay. These results show that CD99 has a costimulatory function for T cells and acts by a mechanism distinct from CD28.  相似文献   

7.
The CD4 and CD8 molecules play an important role in the stimulation of T cells and in the process of thymic education. Most mature T cells express the alpha beta TCR and either CD4 or CD8; however, there is a small population of alpha beta+ TCR T cells that lack both CD4 and CD8. Little is known of the biology of the CD4- CD8- (double-negative) alpha beta+ TCR T cells or the nature of the Ag to which they may respond. These cells not only represent a novel population of T cells but also provide useful biologic tools to study the roles that CD4 and CD8 play in T cell activation. In this study we have addressed two questions. Firstly, whether CD4- CD8- alpha beta+ TCR T cells have functionally active TCR and, secondly, whether CD4 or CD8 is required for the activation of T cells by bacterial enterotoxins. Six double-negative alpha beta+ TCR T cell clones, propagated from two healthy donors, were challenged with a panel of nine bacterial enterotoxins. The V alpha and V beta usage of their TCR was determined by polymerase chain reaction. All of the CD4-CD8- clones proliferated in response to at least one of the enterotoxins, in a V beta-specific manner. The proliferative response of the CD4-CD8- alpha beta+ TCR T cell clones was similar in magnitude to that exhibited by CD4+ T cell clones of known V beta expression. These data clearly show that the CD4 and CD8 molecules are not required for the activation of untransformed human T cells by bacterial enterotoxins. Furthermore, these results indicate that CD4-CD8- alpha beta+ TCR T cells, normally present in all individuals, are not functionally silent, because they can be stimulated via their TCR. Their physiologic role, like that of gamma delta T cells, remains to be elucidated.  相似文献   

8.
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.  相似文献   

9.
Productive engagement of TCR results in delivering signals required for T cell proliferation as well as T cell survival. Blocking TCR-mediated survival signals, T cells undergo apoptosis instead of proliferation upon TCR stimulation. During the activation process, T cells produce IL-2, which acts as an extrinsic survival factor. In addition, TCR stimulation results in up-regulation of Bcl-xL to enhance T cell survival intrinsically. We show in this study that protein kinase C (PKC)-theta is required for enhancing the survival of activated CD4+ T cells by up-regulating Bcl-xL. In response to TCR stimulation, CD4+ PKC-theta-/- T cells failed to up-regulate Bcl-xL, and underwent accelerated apoptosis via a caspase- and mitochondria-dependent pathway. Similar to PKC-theta-deficient primary CD4+ T cells, small interfering RNA-mediated knockdown of PKC-theta in Jurkat cells also resulted in apoptosis upon TCR stimulation. Forced expression of Bcl-xL was sufficient to inhibit apoptosis observed in PKC-theta knockdown cells. Furthermore, ectopic expression of PKC-theta stimulated a reporter gene driven by a mouse Bcl-xL promoter. Whereas an inactive form of PKC-theta or knockdown of endogenous PKC-theta led to inhibition of Bcl-xL reporter. PKC-theta-mediated activation of Bcl-xL reporter was inhibited by dominant-negative IkappaB kinase beta or dominant-negative AP-1. Thus, the PKC-theta-mediated signals may function not only in the initial activation of naive CD4+ T cells, but also in their survival during T cell activation by regulating Bcl-xL levels through NF-kappaB and AP-1 pathways.  相似文献   

10.
A minor subset of T lymphocytes express a TCR composed of gamma and delta chains. This subset differs from conventional T cells for a number of phenotypic and functional characteristics. TCR gamma/delta+ cells simultaneously lack both CD4 and CD8 antigens. Cloning of CD4-8- peripheral blood lymphocytes, under limiting dilution conditions, revealed that they are homogeneously composed of cytolytic cells which efficiently lyse tumor target cells. Formal proofs have been provided that TCR gamma/delta+ cells are able to recognize antigens. For example, they proliferated in response to allogeneic mixed lymphocyte culture (MLC); in addition, MLC-derived TCR gamma/delta+ cells specifically lysed PHA-induced blast cells bearing the stimulating alloantigens. The selection of monoclonal antibodies specific for TCR gamma/delta molecules allowed to identify two distinct subsets of TCR gamma/delta+ cells. Both of these mABs, termed BB3 and delta TCS-1 respectively, induced specific activation of cloned cells expressing the corresponding antigenic determinants (as assessed by measurements of intracellular Ca++ and/or lymphokine production or cytolytic activity). Analysis of the distribution of subsets expressing different forms of TCR gamma/delta, showed that the BB3-reactive form is prevalent in the peripheral blood. In contrast, delta-TCS-1-reactive cells are relatively unfrequent in peripheral blood but represent the majority of TCR gamma/delta+ cells in tissues.  相似文献   

11.
12.
The source of IL-4 required for priming naive T cells into IL-4-secreting effectors has not been clearly identified. Here we show that upon TCR stimulation, thymus NK1-CD4+8- T cells produced IL-4, the magnitude of which was inversely correlated with age. This IL-4 production response by Th2-prone BALB/c mice was approximately 9-fold that of Th1-prone C57BL/10 mice. More than 90% of activated NK1-CD4+8- thymocytes did not use the invariant V alpha 14-J alpha 281 chain characteristic of typical CD1-restricted NK1+CD4+ T cells. Stat6-null NK1-CD4+8- thymocytes produced bioactive IL-4, with induction of IL-4 mRNA expression within 1 h of stimulation. Our results support the possibility that TCR repertoire-diverse conventional NK1-CD4+ T cells are a potential IL-4 source for directing naive T cells toward Th2/type 2 CD8+ T cell (Tc2) effector development.  相似文献   

13.
CD103+ and CD11b+ populations of CD11c+MHCIIhi murine dendritic cells (DCs) have been shown to carry antigens from the lung through the afferent lymphatics to mediastinal lymph nodes (MLN). We compared the responses of these two DC populations in neonatal and adult mice following intranasal infection with respiratory syncytial virus. The response in neonates was dominated by functionally-limited CD103+ DCs, while CD11b+ DCs were diminished in both number and function compared to adults. Infecting mice at intervals through the first three weeks of life revealed an evolution in DC phenotype and function during early life. Using TCR transgenic T cells with two different specificities to measure the ability of CD103+ DC to induce epitope-specific CD8+ T cell responses, we found that neonatal CD103+ DCs stimulate proliferation in a pattern distinct from adult CD103+ DCs. Blocking CD28-mediated costimulatory signals during adult infection demonstrated that signals from this costimulatory pathway influence the hierarchy of the CD8+ T cell response to RSV, suggesting that limited costimulation provided by neonatal CD103+ DCs is one mechanism whereby neonates generate a distinct CD8+ T cell response from that of adults.  相似文献   

14.
15.
Cbl family ubiquitin ligases act as key negative regulators of TCR signaling. Knockout mice lacking Cbl-b and c-Cbl show augmented T cell activation and CD28-independent IL-2 production. In order to study Cbl function directly in post-thymic T cells, a DN Cbl adenovirus was generated for transduction of T cells from Coxsackie/adenovirus receptor (CAR) transgenic (Tg) mice. We show that dominant negative (DN) Cbl-transduced CD4+ T cells exhibited enhanced IL-2 production upon TCR/CD28 engagement compared with empty adenoviral vector-transduced cells. This augmentation was reflected at both IL-2 mRNA and protein level, and correlated with increased protein phosphorylation of Vav, Akt, ERK, and p38MAPK. Our results indicate that introduction of dominant negative Cbl can potentiate activation of post-thymic CD4+ T cells, which argues for development of strategies to interfere with Cbl function as a method of immunopotentiation.  相似文献   

16.
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.  相似文献   

17.
Coreceptor CD8-driven modulation of T cell antigen receptor specificity   总被引:1,自引:0,他引:1  
The CD8 coreceptor modulates the interaction between the T cell antigen receptor (TCR) and peptide-major histocompatibility class I (pMHCI). We present evidence that CD8 not only modifies the affinity of cognate TCR/pMHCI binding by altering both the association rate and the dissociation rate of the TCR/pMHCI interaction, but modulates the sensitivity (triggering threshold) of the TCR as well, by recruiting TCR/pMHCI complexes to membrane microdomains at a rate which depends on the affinity of MHCI/CD8 binding. Mathematical analysis of these modulatory effects indicates that a T cell can alter its functional avidity for its agonists by regulating CD8 expression, and can rearrange the relative potencies of each of its potential agonists. Thus we propose that a T cell can specifically increase its functional avidity for one agonist, while decreasing its functional avidity for other potential ligands. This focussing mechanism means that TCR degeneracy is inherently dynamic, allowing each TCR clonotype to have a wide range of agonists while avoiding autorecognition. The functional diversity of the TCR repertoire would therefore be greatly augmented by coreceptor-mediated ligand focussing.  相似文献   

18.
The activation of T cells and the initiation of an immune response is tightly controlled by both positive and negative regulators. Two adaptors which function as negative regulators of T cell activation are ALX and LAX. ALX constitutively associates with LAX in T cells, and T cells from mice deficient in ALX and LAX display similar hyper-responsiveness upon T cell receptor (TCR)/CD28 stimulation, including increased production of interleukin-2. During T cell activation, ALX is inducibly phosphorylated, however the site of ALX phosphorylation had not been previously identified and the role of phosphorylation in the inhibitory function of ALX was not known. Here, using mass spectrometry, we demonstrate that ALX is phosphorylated on a serine at position 318. Substitution of alanine for serine at this position (ALX S318A) leads to an abrogation of the mobility shift in ALX induced upon TCR/CD28 stimulation. However, ALX S318A retained the ability to bind to and stimulate tyrosine phosphorylation of LAX. In addition, overexpression of ALX S318A inhibited RE/AP activation upon TCR/CD28 stimulation to a similar extent as wild-type ALX. Therefore, although ALX is inducibly phosphorylated upon TCR/CD28 stimulation, this phosphorylation is not required for ALX to inhibit T cell activation.  相似文献   

19.
Among Ag-inexperienced naive T cells, the CD1d-restricted NKT cell that uses invariant TCR-alpha-chain is the most widely studied cell capable of prompt IL-4 inducibility. We show in this study that thymus CD161-CD44lowCD4+CD8- T cells promptly produce IL-4 upon TCR stimulation, a response that displays biased Vbeta(2/7/8) and Valpha3.2 TCR usage. The association of Vbeta family bias and IL-4 inducibility in thymus CD161-CD44lowCD4+CD8- T cells is found for B6, B10, BALB/c, CBA, B10.A(4R), and ICR mouse strains. Despite reduced IL-4 inducibility, there is a similarly biased Vbeta(2/7/8) TCR usage by IL-4 inducibility+ spleen CD161-CD44lowCD4+CD8- T cells. Removal of alpha-galacotosylceramide/CD1d-binding cells from CD161-CD44lowCD4+CD8- thymocytes does not significantly affect their IL-4 inducibility. The development of thymus CD161-CD44lowCD4+CD8- T cells endowed with IL-4 inducibility and their associated use of Vbeta(2/7/8) are beta2-microglobulin-, CD1d-, and p59fyn-independent. Thymus CD161-CD44lowCD4+CD8- T cells produce low and no IFN-gamma inducibility in response to TCR stimulation and to IL-12 + IL-18, respectively, and they express diverse complementarity determining region 3 sequences for both TCR-alpha- and -beta-chains. Taken together, these results demonstrate the existence of a NKT cell distinct, TCR-repertoire diverse naive CD4+ T cell subset capable of prompt IL-4 inducibility. This subset has the potential to participate in immune response to a relatively large number of Ags. The more prevalent nature of this unique T cell subset in the thymus than the periphery implies roles it might play in intrathymic T cell development and may provide a framework upon which mechanisms of developmentally regulated IL-4 gene inducibility can be studied.  相似文献   

20.
T cell proliferation and cytokine production usually require stimulation via both the TCR/CD3 complex and the CD28 costimulatory receptor. Using purified human CD4+ peripheral blood T cells, we show that CD28 stimulation alone activates p38 alpha mitogen-activated protein kinase (p38 alpha). Cell proliferation induced by CD28 stimulation alone, a response attributed to CD4+CD45RO+ memory T cells, was blocked by the highly specific p38 inhibitors SB 203580 (IC50 = 10-80 nM) and RWJ 67657 (IC50 = 0.5-4 nM). In contrast, proliferation induced by anti-CD3 plus anti-CD28 mAbs was not blocked. Inhibitors of p38 also blocked CD4+ T cell production of IL-4 (SB 203580 IC50 = 20-100 nM), but not IL-2, in response to CD3 and CD28 stimulation. IL-5, TNF-alpha, and IFN-gamma production were also inhibited, but to a lesser degree than IL-4. IL-4 production was attributed to CD4+CD45RO+ T cells, and its induction was suppressed by p38 inhibitors at the mRNA level. In polarized Th1 and Th2 cell lines, SB 203580 strongly inhibited IL-4 production by Th2 cells (IC50 = 10-80 nM), but only partially inhibited IFN-gamma and IL-2 production by Th1 cells (<50% inhibition at 1 microM). In both Th1 and Th2 cells, CD28 signaling activated p38 alpha and was required for cytokine production. These results show that p38 alpha plays an important role in some, but not all, CD28-dependent cellular responses. Its preferential involvement in IL-4 production by CD4+CD45RO+ T cells and Th2 effector cells suggests that p38 alpha may be important in the generation of Th2-type responses in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号