首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cytotoxic CD8+ T lymphocytes (CTL) directed against the matrix protein pp65 are major effectors in controlling infection against human cytomegalovirus (HCMV), a persistent virus of the Betaherpesvirus family. We previously suggested that cross-presentation of pp65 by nonpermissive dendritic cells (DCs) could overcome viral strategies that interfere with activation of CTL (G. Arrode, C. Boccaccio, J. Lule, S. Allart, N. Moinard, J. Abastado, A. Alam, and C. Davrinche, J. Virol. 74:10018-10024, 2000). It is well established that mature DCs are very potent in initiating T-cell-mediated immunity. Consequently, the DC maturation process is a key step targeted by viruses in order to avoid an immune response. Here, we report that immature DCs maintained in coculture with infected human (MRC5) fibroblasts acquired pp65 from early-infected cells for cross-presentation to specific HLA-A2-restricted CTL. In contrast, coculture of DCs in the presence of late-infected cells decreased their capacity to stimulate CTL. Analyses of DC maturation after either coculture with infected MRC5 cells or incubation with infected-cell-conditioned medium revealed that acquisition of a mature phenotype was a prerequisite for efficient stimulation of CTL and that soluble factors secreted by infected cells were responsible for both up and down regulation of CD83 expression on DCs. We identified transforming growth factor beta1 secreted by late HCMV-infected cells as one of these down regulating mediators. These findings suggest that HCMV has devised another means to compromise immune surveillance mechanisms. Together, our data indicate that recognition of HCMV-infected cells by DCs has to occur early after infection to avoid immune evasion and to allow generation of anti-HCMV CTL.  相似文献   

2.
We evaluated the effect of immunization with dendritic cells (DCs) pulsed with alpha-galactosylceramide (alphaGalCer) and listeriolysin O (LLO) 91-99 peptide, a dominant cytotoxic T lymphocyte (CTL) epitope of Listeria monocytogenes by observing the responses of specific CD8(+) T cells and in vivo CTL activity. DCs were pulsed with various combinations of alphaGalCer and LLO91-99 peptide and administered to BALB/c mice. Immunization with DCs pulsed with alphaGalCer and LLO91-99 at priming phase and with DCs pulsed with LLO91-99 alone at boosting phase induced stronger in vivo CTL activity, reduced the bacterial load in spleens of Listeria-challenged mice and augmented CD62L(+) CD8(+) central memory T cells compared with other immunization protocols. The blockade of interferon-gamma (IFN-gamma) at boosting phase reversed the induction of CD8(+) central memory T cells and reduced the bacterial load in spleens of Listeria-challenged mice immunized with DCs pulsed with alphaGalCer and LLO91-99 at both phases, suggesting that alphaGalCer at boosting phase has deleterious effects through IFN-gamma production. These results indicate that immunization with DCs pulsed with CTL epitope peptide together with alphaGalCer at priming phase, but not at boosting phase, is feasible for eliciting a specific CTL activity and protective immunity against infection of intracellular bacteria.  相似文献   

3.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

4.
The ability of two different human professional APCs, specifically macrophages (Mphi) and dendritic cells (DC), to stimulate primary responses in human CD8+ T lymphocytes was examined using both allogeneic and Ag-pulsed autologous APCs. CTL responses in CD8+ T lymphocytes isolated from HIV-uninfected donors were evaluated against six different HIV epitopes that are restricted by four different HLA alleles using autologous human PBMC-derived Mphi and DCs for primary stimulation. In a side-by-side experiment, immature DCs, but not Mphi, were able to prime a CTL response against the B14-restricted p24gag 298-306 epitope; mature DCs were also able to prime a response against this epitope. In addition, DCs were capable of priming CD8+ CTL responses against the B8-restricted p24gag 259-267 epitope. In contrast, Mphi were unable to prime strong CTL responses against other epitopes. Since the Ag-specific cytotoxic responses required subsequent rounds of restimulation before they could be detected, the ability of the allogeneic Mphi and DCs to directly prime CD8+ T lymphocyte responses without subsequent restimulation was examined. Similar to the aforementioned peptide-specific results, DCs were more efficient than Mphi in priming both allogeneic proliferative and cytotoxic responses in human CD8+ T lymphocytes. Collectively, these results promote an enhanced status for DCs in the primary stimulation of human CD8+ T lymphocytes.  相似文献   

5.
Sustained Ag expression by human dendritic cells (DCs) is an attractive means of optimizing Ag presentation for stimulating durable cellular immunity. To establish proof of principle, we used Langerhans cell (LC) progeny of retrovirally transduced CD34(+) hemopoietic progenitor cells to stimulate responses against the HLA-A*0201-restricted influenza matrix peptide (fluMP). Retroviral transduction of CD34(+) hemopoietic progenitor cells, during pre-expansion by thrombopoietin, c-kit ligand, and FLT-3 ligand, on recombinant fibronectin, but in the absence of FCS, resulted in gene expression by 20-30% of the LCs. Expression persisted at least 28 days, with little decline (<30%) over that time. Retroviral transduction did not alter the phenotype or potent immunogenicity of normal mature DCs. FluMP-transduced LCs stimulated a 130-fold expansion of T cells reactive with HLA-A*0201-fluMP tetramers, even at LC:T cell ratios of 1:100-150 and lower, whereas fluMP-pulsed LCs stimulated only a 30-fold expansion. FluMP-transduced LCs also stimulated higher IFN-gamma secretion (100-123 spot-forming cells/10(5) CD8(+) T cells) than did fluMP-pulsed LCs (10-91 spot-forming cells/10(5) CD8(+) T cells). CD8(+) T cells stimulated by transduced LCs did not react preferentially with retrovirally transduced targets, indicating that the responses targeted only the immunizing influenza and not the retroviral vector Ags, even though these could have provided nonspecific helper epitopes presented by the transduced LCs. These data demonstrate that gene-transduced LCs maintain the activated phenotype as well potent immunogenicity typical of mature DCs. LCs genetically modified to express fluMP are also more potent stimulators of Ag-specific CD8(+) T cell responses than are peptide-pulsed LCs.  相似文献   

6.
The emerging heterogeneity of dendritic cells (DCs) mirrors their increasingly recognized division of labor at myriad control points in innate and acquired cellular immunity. We separately generated blood monocyte-derived DCs (moDCs), as well as Langerhans cells (LCs) and dermal-interstitial DCs (DDC-IDCs) from CD34(+) hematopoietic progenitor cells. Differential expression of CD11b, CD52, CD91, and the CD1 isoforms proved useful in distinguishing these three DC types. All mature DCs uniformly expressed comparable levels of HLA-DR, CD83, CD80, and CD86, and were potent stimulators of allogeneic T cells after exposure either to recombinant human CD40L trimer or a combination of inflammatory cytokines with PGE(2). moDCs, however, required 0.5-1 log greater numbers than LCs or DDC-IDCs to stimulate comparable T cell proliferation. Only moDCs secreted the bioactive heterodimer IL-12p70, and moDCs phagocytosed significantly more dying tumor cells than did either LCs or DDC-IDCs. LCs nevertheless proved superior to moDCs and DDC-IDCs in stimulating CTL against a recall viral Ag by presenting passively loaded peptide or against tumor Ag by cross-priming autologous CD8(+) T cells. LCs also secreted significantly more IL-15 than did either moDCs or DDC-IDCs, which is especially important to the generation of CTL. These findings merit further comparisons in clinical trials designed to determine the physiologic relevance of these distinctions in activity between LCs and other DCs.  相似文献   

7.
Presentation of MHC class I-restricted peptides by dendritic cells (DCs) can elicit vigorous antigen-specific CTL responses in vivo. It is well established, however, that T cell help can augment CTL function, raising the question of how best to present tumor-associated MHC class I epitopes to induce effective tumor immunity. To this end, we have examined the role of MHC class II peptide-complexes present on the immunizing DCs in a murine melanoma model. To present MHC class I- and II-restricted Ags reliably on the same cell, we retrovirally transduced bone marrow-derived DCs with the model Ag OVA encoding well-defined class I- and II-restricted epitopes. The importance of CD4+ T cells activated by the immunizing DCs in this model is demonstrated by the following findings: 1) transduced DCs presenting class I and class II epitopes are more efficient than class I peptide-pulsed DCs; 2) MHC class II-deficient DCs fail to induce tumor protection; 3) CD4+ T cell depletion abolishes induction of tumor protection; and 4) DCs presenting bovine serum Ags are more effective in establishing tumor immunity than DCs cultured in syngeneic serum. When MHC class II-deficient DCs were directly activated via their CD40 receptor, we indeed observed a moderate elevation of OVA-specific CTL activity. However, this increase in CTL activity was not sufficient to induce in vivo tumor rejection. Thus, our results demonstrate the potency of genetically modified DCs that express both MHC class I and II epitopes, but caution against the use of DCs presenting only the former.  相似文献   

8.
Consistent with their seminal role in detecting infection, both mouse bone marrow-derived and splenic CD11c+ dendritic cells (DCs) exhibited higher levels of uptake of Plasmodium chabaudi-parasitized RBCs (pRBCs) than of noninfected RBCs (nRBCs) as determined by our newly developed flow cytometric technique using the dye CFSE to label RBCs before coculture with DCs. To confirm that expression of CFSE by CD11c+ cells following coculture with CFSE-labeled pRBCs represents internalization of pRBC by DCs, we showed colocalization of CFSE-labeled pRBCs and PE-labeled CD11c+ DCs by confocal fluorescence microscopy. Treatment of DCs with cytochalasin D significantly inhibited the uptake of pRBCs, demonstrating that uptake is an actin-dependent phagocytic process. The uptake of pRBCs by splenic CD11c+ DCs was significantly enhanced after infection in vivo and was associated with the induction of DC maturation, IL-12 production, and stimulation of CD4+ T cell proliferation and IFN-gamma production. These results suggest that DCs selectively phagocytose pRBCs and present pRBC-derived Ags to CD4+ T cells, thereby promoting development of protective Th1-dependent immune responses to blood-stage malaria infection.  相似文献   

9.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

10.
Activation of T cells requires both TCR-specific ligation by direct contact with peptide Ag-MHC complexes and coligation of the B7 family of ligands through CD28/CTLA-4 on the T cell surface. We recently reported that coadministration of CD86 cDNA along with DNA encoding HIV-1 Ags i.m. dramatically increased Ag-specific CTL responses. We investigated whether the bone marrow-derived professional APCs or muscle cells were responsible for the enhancement of CTL responses following CD86 coadministration. Accordingly, we analyzed CTL induction in bone marrow chimeras. These chimeras are capable of generating functional viral-specific CTLs against vaccinia virus and therefore represent a useful model system to study APC/T cell function in vivo. In vaccinated chimeras, we observed that only CD86 + Ag + MHC class I results in 1) detectable CTLs following in vitro restimulation, 2) detectable direct CTLs, 3) enhanced IFN-gamma production in an Ag-specific manner, and 4) dramatic tissue invasion of T cells. These results support that CD86 plays a central role in CTL induction in vivo, enabling non-bone marrow-derived cells to prime CTLs, a property previously associated solely with bone marrow-derived APCs.  相似文献   

11.
Dendritic cells (DC) can be generated in vitro from monocytes (M-DC) or from CD34+ hemopoietic progenitor cells (CD34-DC) but their precursors are not equivalent cells, prompting a comparison of the functional capacities of these APC. Both types of DCs established from the same individuals using the same cytokines displayed a comparable phenotype of mature DC (CD1a+, CD83+, CD86+, CD4+, HLA-DR++, CD14-, CD15- ) and were equally potent stimulators of allogeneic T cell proliferation, being both more powerful than immature M-DCs. An autologous panel of APCs produced in HLA-A2+ individuals, including CD34-DC, M-DC, monocytes, and EBV-lymphoid cell line was comparatively evaluated for presentation of the Erb-B2 peptide E75 to a CTL line. After short exposures (5 h) to E75-loaded APCs, similar levels of intracellular IFN-gamma were induced in Ag-specific CD8+ T cells regardless of APC type. In sustained cultures (4-14 days), more Ag-specific T cells were obtained when peptide was presented on CD34-DC (p < 0.05) rather than on M-DC, EBV-lymphoid cell lines, or monocytes, and these effects were dose-dependent. Activated T cells expressed 4-1BB, and the presence of 4-1BB-Ig fusion protein partially blocked Ag-specific CD8+ cell activation after CD34-DC or M-DC presentation. Our results show that 34-DC have a preferential capacity to activate CD8+ T cells and that this property is not strictly correlated to their ability to induce allogeneic T cell proliferation but due to mechanisms that remain to be defined.  相似文献   

12.
Dendritic cells (DCs) play a pivotal role in the development of anti-viral CD8(+) CTL responses. This is straightforward if they are directly infected with virus, but is less clear in response to viruses that cannot productively infect DCS: Human CMV (HCMV) shows strain-specific cell tropism: fibroblast (Fb)-adapted laboratory strains (AD169) and recent clinical isolates do not infect DCs, whereas endothelial cell-adapted strains (TB40/E) result in productive lytic DC infection. However, we show here that uninfected DCs induce CD8(+) T cell cytotoxicity and IFN-gamma production against HCMV pp65 and immediate early 1 Ags following in vitro coculture with HCMV-AD169-infected Fbs, regardless of the HLA type of these FBS: CD8(+) T cell stimulation was inhibited by pretreatment of DCs with cytochalasin B or brefeldin A, indicating a phagosome/endosome to cytosol pathway. HCMV-infected Fbs were not apoptotic as measured by annexin V binding, and induction of apoptosis of infected Fbs in vitro did not augment CTL induction by DCs, suggesting a mechanism other than apoptosis in the initiation of cross-presentation. Furthermore, HCMV-infected Fbs provided a maturation signal for immature DCs during coculture, as evidenced by increased CD83 and HLA class II expression. Cross-presentation of HCMV Ags by host DCs enables these professional APCs to bypass some of the evasion mechanisms HCMV has developed to avoid T cell recognition. It may also serve to explain the presence of immediate early 1 Ag-specific CTLs in the face of pp65-induced inhibition of Ag presentation at the level of the infected cell.  相似文献   

13.
Recombinant adeno-associated virus type 2 (rAAV) is being explored as a vector for gene therapy because of its broad host range, good safety profile, and persistent transgene expression in vivo. However, accumulating evidence indicates that administration of AAV vector may initiate a detectable cellular and humoral immune response to its transduced neo-antigen in vivo. To elucidate the cellular basis of the AAV-mediated immune response, C57BL/6 mouse bone marrow-derived immature and mature dendritic cells (DCs) were infected with AAV encoding beta-galactosidase (AAV-lacZ) and adoptively transferred into mice that had received an intramuscular injection of AAV-lacZ 10 days earlier. Unexpectedly, C57BL/6 mice but not CD40 ligand-deficient (CD40L(-/-)) mice adoptively transferred with AAV-lacZ-infected immature DCs developed a beta-galactosidase-specific cytotoxic T-lymphocyte (CTL) response that markedly diminished AAV-lacZ-transduced gene expression in muscle fibers. In contrast, adoptive transfer of AAV-lacZ-infected mature DCs failed to elicit a similar CTL response in vivo. Our findings indicate, for the first time, that immature DCs may be able to elicit a CD40L-dependent T-cell immunity to markedly diminish AAV-lacZ transduced gene expression in vivo when a sufficient number of DCs capturing rAAV vector and/or its transduced gene products is recruited.  相似文献   

14.
We previously isolated the novel heteropolysaccharide maitake Z-fraction (MZF) from the maitake mushroom (Grifola frondosa), and demonstrated that MZF significantly inhibited tumor growth by inducing cell-mediated immunity. In this study, we demonstrated that MZF upregulated the expression of CD80, CD86, CD83, and MHC II on bone marrow-derived dendritic cells (DCs) and significantly increased interleukin-12 (IL-12) and tumor necrosis factor-alpha production by DCs in a dose-dependent manner. MZF-treated DCs significantly stimulated both allogeneic and antigen-specific syngenic T cell responses and enhanced antigen-specific interferon-gamma (IFN-γ) production by syngenic CD4+ T cells; however, MZF-treated DCs did not affect IL-4 production. Furthermore, the enhancement of IFN-γ production in CD4+ T cells, which was induced by MZF-treated DCs, was completely inhibited by the addition of an anti-IL-12 antibody. These results indicate that MZF induced DC maturation and antigen-specific Th1 response by enhancing DC-produced IL-12. We also demonstrated that DCs pulsed with colon-26 tumor lysate in the presence of MZF induced both therapeutic and preventive effects on colon-26 tumor development in BALB/c mice. These results suggest that MZF could be a potential effective adjuvant to enhance immunotherapy using DC-based vaccination.  相似文献   

15.
Kurooka M  Kaneda Y 《Uirusu》2007,57(1):19-27
Ultraviolet-inactivated, replication-defective Sendai virus particles (Hemagglutinating virus of Japan envelope, HVJ-E) injected into murine colon carcinoma (CT26) tumors growing in syngeneic Balb/c mice eradicated 60-80% of the tumors and obviously inhibited the growth of the remainder. Induced adaptive anti-tumor immune responses were dominant in the tumor eradication process because the effect was abrogated in severe combined immunodeficient (SCID) mice. Murine and human dendritic cells (DCs) underwent dose-dependent maturation by HVJ-E in vitro. Profiles of cytokines secreted by DCs after HVJ-E stimulation showed that the amount of IL-6 released was comparable to that elicited by live HVJ. Real-time RT-PCR and immunohistochemistry revealed that HVJ-E induced a remarkable infiltration of DCs, CD4+ and CD8+ T cells into tumors and CT26 specific cytotoxic T lymphocytes (CTL) were induced. On the other hand, conditioned medium from DCs stimulated by HVJ-E (H-DCCM) rescued CD4+CD25- effector T cell proliferation from Foxp3+CD4+CD25+ regulatory T cell (Treg) mediated suppression and IL-6 was presumably dominant for this phenomenon. We also confirmed such rescue in mice treated with HVJ-E in vivo. Moreover, anti-tumor effect of HVJ-E was significantly reduced by an in vivo blockade of IL-6 signaling. Depending on cancer cell types, it is also expected that HVJ-E eradicates tumor by its direct cytotoxity against cancer cells or activating NK cells. Because it can enhance anti-tumor immunity and simultaneously remove Treg mediated suppression, HVJ-E shows promise as a novel therapeutic for cancer immunotherapy.  相似文献   

16.
Mice made transgenic (Tg) for a rat anti-mouse CD4 Ab (GK mice) represent a novel CD4-deficient model. They not only lack canonical CD4 cells in the periphery, but also lack the residual aberrant Th cells that are found in CD4-/- mice and MHC class II-/- mice. To analyze the role of CD4 help and costimulation for CTL induction against alloantigens, we have assessed the surface and functional phenotype of CD8 cells in vivo (e.g., clearance of allogeneic P815 cells) and in vitro. In our CD4-deficient GK mice, CTL responses to allogeneic P815 cells were induced, albeit delayed, and were sufficient to eliminate P815 cells. Induction of CTL and elimination of allogeneic P815 cells were inhibited both in the presence and absence of CD4 cells by temporary CD40 ligand blockade. This indicated that direct interaction of CD40/CD40L between APCs and CD8 cells may be an accessory signal in CTL induction (as well as the indirect pathway via APC/CD4 interaction). Furthermore, whereas in CTLA4Ig single Tg mice P815 cells were rejected promptly, in the double Tg GK/CTLA4Ig mice CTL were not induced and allogeneic P815 cells were not rejected. These findings suggest that CD40/CD40L is involved in both CD4-dependent and CD4-independent pathways, and that B7/CD28 is pivotal in the CD4-independent pathway of CTL induction against allogeneic P815 cells.  相似文献   

17.
Based on several previous studies indicating that transfection of genomic DNA can stably alter the character of the cells that take up the exogenous DNA, we investigated antitumor immunity conferred by fusions of syngeneic dendritic cells (DCs) and allogeneic fibroblasts (NIH3T3) transfected with genomic DNA from B16 tumor cells. Fusion cells (FCs) composed of dendritic and genetically engineered NIH3T3 cells were prepared with polyethylene glycol, and fusion efficiency was 30.3%. Prior immunization with FCs prevented tumor formation upon challenge with B16 tumor cells. Efficacy was reduced when studies were performed in mice depleted of NK cells. Vaccination with FCs containing DCs and fibroblasts transfected with denatured DNA did not inhibit tumor growth. Cytotoxic T cell (CTL) activity of spleen cells from immunized mice against both Yac-1 and tumor cells was also stimulated by administration of FCs compared with the activity observed for cells obtained from naïve mice. These data demonstrate the therapeutic efficacy of fusion cell–based vaccine therapy using syngeneic DCs and allogeneic fibroblasts transfected with tumor-derived genomic DNA.  相似文献   

18.
AIMP1 (ARS-interacting multifunctional protein 1), previously known as p43, was initially identified as a factor associated with a macromolecular tRNA synthetase complex. Recently, we demonstrated that AIMP1 is also secreted and acts as a novel pleiotropic cytokine. In this study, we investigated whether AIMP1 induces the activation and maturation of murine bone marrow-derived dendritic cells (DCs). AIMP1-treated DCs exhibited up-regulated expression of cell-surface molecules, including CD40, CD86, and MHC class II. Additionally, microarray analysis and RT-PCR determinations indicated that the expression of known DC maturation genes also increased significantly following treatment with AIMP1. Treatment of DCs with AIMP1 resulted in a significant increase in IL-12 production and Ag-presenting capability, and it also stimulated the proliferation of allogeneic T cells. Importantly, AIMP1-treated DCs induced activation of Ag-specific Th type 1 (Th1) cells in vitro and in vivo. AIMP1-stimulated DCs significantly enhanced the IFN-gamma production of cocultured CD4+ T cells. Immunization of mice with keyhole limpet hemocyanin-pulsed AIMP1 DCs efficiently led to Ag-specific Th1 cell responses, as determined by flow cytometry and ELISA. The addition of a neutralizing anti-IL-12 mAb to the cell cultures that had been treated with AIMP1 resulted in the decreased production of IFN-gamma, thereby indicating that AIMP1-stimulated DCs may enhance the Th1 response through increased production of IL-12 by APCs. Taken together, these results indicate that AIMP1 protein induces the maturation and activation of DCs, which skew the immune response toward a Th1 response.  相似文献   

19.
Dendritic cells (DCs) require a maturation signal to acquire efficient CTL-priming capacity. In vitro FcgammaR-mediated internalization of Ag-Ab immune complexes (ICs) can induce maturation of DCs. In this study, we show that IC-induced DC maturation in vitro enables DCs to prime peptide-specific CD8+ CTLs in vivo, independently of CD4+ Th cells. Importantly, OVA/anti-OVA IC-treated DCs not only primed CD8+ CTLs to an exogenously loaded peptide nonrelated to OVA, but also efficiently primed CTLs against the dominant CTL epitope derived from the OVA Ag present in the ICs. Our studies show that ICs fulfill a dual role in priming of CD8+ CTL responses to exogenous Ags: enhancement of Ag uptake by DCs and activation of DCs, resulting in "license to kill." These findings indicate that the presence of specific Abs can crucially affect the induction of cytotoxic cellular responses.  相似文献   

20.
Members of the TNF superfamily have been shown to be instrumental in enhancing cell-mediated immune responses, primarily through their interactions with dendritic cells (DCs). We systematically evaluated the ability of three TNF superfamily molecules, CD40 ligand (CD40L), receptor activator of NF-kappaB ligand (RANKL), and TNF-alpha, to expand ex vivo EBV-specific CTL responses in healthy human individuals and ex vivo HIV-1-specific CTL responses in HIV-1-infected individuals. In both groups of individuals, we found that all three TNF family molecules could expand CTL responses, albeit at differing degrees. CD40L treatment alone was better than RANKL or TNF-alpha alone to mature DCs and to expand CTL. In healthy volunteers, TNF-alpha or RANKL could cooperate with CD40L to maximize the ability of DCs to expand virus-specific CTL responses. In HIV-1 infection, cooperative effects between TNF-alpha or RANKL in combination with CD40L were variable. TNF-alpha and RANKL cooperated with CD40L via differing mechanisms, i.e., TNF-alpha enhanced IL-12 production, whereas RANKL enhanced survival of CD40L-stimulated DCs. These findings demonstrate that optimal maturation of DCs requires multiple signals by TNF superfamily members that include CD40L. In HIV-1 infection, DCs may only require CD40L to maximally expand CTL. Finally, CTL responses were higher in CD4(+) T cell-containing conditions even in the presence of TNF family molecules, suggesting that CD4(+) T cells can provide help to CD8(+) T cells independently of CD40L, RANKL, or TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号