首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Individual leaves of eastern cottonwood (Populus deltoides Bartr.), representing an ontogenetic series from leaf plastochron index (LPI) 3.0 to 8.0, were fed 14CO2 and harvested after 2–24 h. Importing leaves from LPI-1.0 through 8.0 on each plant were sectioned into 9 parts, and each part was quantitatively assayed for 14C activity. The highest level of 14C import was by leaves from LPI 1.0 to 3.0, irrespective of source-leaf age. 14C was translocated preferentially to either the right or left lamina-half depending on the position of the importing leaf in the phyllotactic sequence and its stage of development. For example, import was high when the importing leaf and the source leaf had two vascular bundles in common, moderately high with one bundle in common, and low with no bundles in common. The distribution of 14C within young importing leaves was highest in the lamina tip and decreased toward the base. With increasing leaf age, incorporation declined in the lamina tip and increased in the base.It may be concluded that each cottonwood leaf progresses through a continuum of importing and exporting stages as its lamina expands. The photosynthate imported by a given leaf is compartmentalized, with different exporting leaves supplying photosynthate to rather restricted regions of the lamina. Such localization within the importing leaf depends on its vascular connections with each of the exporting leaves, and these are predictable from a knowledge of the phyllotaxy.Plant Physiologists.  相似文献   

2.
To examine 14CO2 fixation, potential translocation, and carbonflow among leaf chemical fractions of young developing leaves,the shoot tip of 24-leaf cottonwood (Populus deltoides Bartr.ex. Marsh) plants were cut off under water, placed in artificialxylem sap, and treated with 14CO2 in continuous and pulse-chaseexperiments. Additional leaves on whole plants were spot treatedon the lamina tip to follow export from the tip only. The analysedleaves ranged in age from leaf plastochron index(LPI) –5to 3, the spot treated leaves from LPI 2 to 5. After 30 minfixation, the specific activity in the lamina tip increasedlinearly with leaf age from LPI –5 to 1 (0.5 to 4.5 kBqmg–1). Specific activity in the lower lamina increasedslowly with leaf age and did not reach 500 kBq mg–1 untilLPI –1. Total 14CO2 fixed in the lower lamina exceededthat fixed in the tip by LPI –2 because of the large amountof tissue present in the lower lamina. Although the lamina tipfixed high levels of 14CO2, pulse-chase studies coupled withautoradiography indicated no vein loading or translocation fromthe tip until about LPI 4 or 5. The 14C fixed in both tip andlower lamina was incorporated at the site of fixation and wasnot distributed to younger tissue or translocated from the lamina.Although the percentage distribution (14C in each chemical fractioncompared with the total in all fractions) of 14C among certainchemical fractions, e.g. sugars, amino acids and proteins, indicatedthat the mesophyll of the tip was more mature than the lowerlamina, physiologically both leaf sectors were immature basedon the expected 14C distribution in mature tissue. Informationfrom this and other studies indicates that the extreme tip ofa developing cottonwood leaf first begins to export photosynthateabout LPI 4 or 5 on a 24-leaf plant. The first photosynthatetranslocated may be incorporated into the vascular tissues andmesophyll directly below the tip. However, as the tip continuesto mature photosynthate is translocated past the immature lowerlamina into the petiole and out of the leaf. Populus deltoides Bartr. ex. Marsh, eastern cottonwood, translocation, leaf development, 14C fixation, carbon metabolism  相似文献   

3.
Northern red oak (Quercus rubra L.) leaves were shown to mature progressively from base to tip of the lamina based on studies of growth rates, anatomical differentiation, and 14C-transport. Lamina expansion in both length and width ceased in the basal quarter of the leaf before the apical quarter. Cell expansion and tissue differentiation were more advanced at the base than at the tip of leaves at 10%–20% of full expansion. Physiological data supported the morphological and anatomical data. Sink activity was examined by following the distribution of 14C imported into sink leaves with direct vascular connections to the source leaf to assure uniform assimilate supply to the sink leaves. Leaves approximately 50% of full expansion imported five to seven times more l4C-assimilates into the tip than into the base of the leaf, consistent with continued sink activity in the leaf tip after import by the leaf base has ceased. Transport of 14C from portions of the leaf, indicating source activity, occurred first in the basal portion of the lamina. The base functioned as a source at approximately 40% of full expansion; the tip, at approximately 60%. Thus, northern red oak displays an acropetal pattern of leaf expansion and differentiation, unlike the more typical pattern of basipetal leaf development defined in many other dicotyledonous genera with simple leaves.  相似文献   

4.
The incorporation of photosynthetically fixed 14CO2 and the distribution of 14C among the main chemical constituents of laminae and petioles were examined in cottonwood (Populus deltoides Bartr. ex Marsh.) leaves ranging in age from Leaf Plastochron Index (LPI) 3 (about one-quarter to one-third expanded) to LPI 30 (beginning of senescence). In addition, carbon flow among chemical fractions and translocation from leaves of LPI 7 and 14 were examined periodically up to 24 h after labeling. Specific activity of 14C (on dry-weight basis) increased in developing laminae to full leaf expansion, decreased in the mature leaves to LPI 16, then remained constant to LPI 30. In developing leaves (LPI 3-5), after 2 h, most of the 14C was found in protein, pigments, lipids, and other structural and metabolic components necessary for cell development; only 28% was in the sugar fraction of the lamina. In fully expanded leaves (LPI 6-8), after 2 h, the sugar fraction contained 50–60% and about 90% of fixed 14C in the lamina and the petiole, respectively. In a pulsechase kinetic series with recently mature leaves, 60% of the 14C was found in the sugar fraction after 15 min of 14CO2 fixation. Over the 24-h translocation period, 14C decreased in sugars to 23% and increased in the combined residue fraction (protein, starch, and structural carbohydrates) to about 60% of the total activity left in the lamina. Within 24 h after labeling, the turnover of 14C-organic acids,-sugar, and-amino acids (either metabolzed or translocated from the leaf) was 30, 70 and 80%, respectively, of that initially incorporated into these fractions by a leaf at LPI 7 (turnover was 55% of 14C-organic acids, 80% of 14C-sugar, and 95% of 14C-amino acids at LPI 14). Anatomical maturity in cottonwood leaves is closely correlated with physiological maturity and with production of translocatable sugar.Abbreviations LPI leaf plastochron index - PI plastochron index Research Plant Physiologist and Chief Plant Physiologist, respectively  相似文献   

5.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

6.
The incorporation and distribution of photosynthetically fixed 14CO2 was followed for 48 hours in a recently matured source leaf (LPI 7) and in young expanding source and sink leaves (LPI 4) of cottonwood (Populus deltoides Bartr.). The major chemical constituents of leaf laminae and petioles were separated by sequential solvent extractions and enzyme hydrolyses. Two hours after labeling, about 80% of the 14C was found in water-alcohol-soluble constituents in the mature source lamina as compared to about 45% in those of the young expanding leaf. In both mature and expanding source leaves the water-alcohol-soluble constituents decreased while the CHCl3-soluble and -insoluble compounds increased with time. After 48 hours, 7 and 37% of the total 14C was recovered from structural carbohydrates and from protein + CHCl3-soluble fractions, respectively, in the mature source leaf; and 4 and 65%, respectively, in the young source leaf. When the distribution of 14C among major chemical fractions was calculated on per cent dpm/mg basis, the data showed that a young sink leaf incorporated over twice as much 14C into structural carbohydrates as a young source leaf (11% versus 4%). However, when calculated on an absolute dpm/mg basis, activity in this fraction of the young source leaf exceeded that in the sink leaf by a ratio of about 11:1 (9528 versus 845 dpm/mg). Thus, most of the material for synthesis of structural carbohydrates was derived from in situ photosynthate.  相似文献   

7.
Summary The ability of a developing cottonwood (Populus deltoides Bartr.) leaf to export 14C-labeled assimilates begins at the lamina tip and progresses basipetally with increasing LPI. This progression indicates that portions of leaves function quasi-independently in their ability to export 14C-photosynthate. Although most of the exported radioactivity was recovered in the petiole as water-80% alcohol-soluble compounds, there was also substantial incorporation into the chloroform and insoluble fractions. This observation indicates that assimilates translocated from the lamina are used in structural development of the petiole. Freeze substitution and epoxy embedding were used to prepare microautoradiographs for localization of water-soluble compounds. Radioactivity was found in all cell types within specific subsidiary bundles of the petiole. However, radioactive assimilates appeared to move from the translocation pathway in the phloem toward active sinks in the walls of the expanding metaxylem cells. Translocation in the mature xylem vessels was not observed.  相似文献   

8.
The transport and metabolism of xylem-borne amino compounds and sucrose were investigated in rapidly growing shoots of cottonwood (Populus deltoides Bartr. ex Marsh.). 14C-labeled glutamine, threonine, alanine, glutamic acid, aspartic acid, and sucrose were applied to the base of severed stems for transport in xylem. Distribution and metabolism of the compounds were followed with autoradiography, microautoradiography, and radioassay. Three utilization patterns were observed: (a) little alanine and sucrose was transported to the laminae of either mature leaves or developing leaves. These compounds were taken up from xylem free-space and utilized in adjacent tissue; (b) threonine also did not move into mature leaves but was translocated to developing leaves or utilized in the stem; (c) glutamic acid and aspartic acid were transported directly into the laminae of mature leaves via the xylem. Relatively less 14C was retained in stems compared to the other compounds.

Metabolism of the test compounds also differed considerably. 14C from amino acids moved primarily into organic acids and protein. The 14C from sucrose was widely distributed among the chemical fractions, with a high percentage found in structural carbohydrates. Clearly, cottonwood stems contain efficient uptake and transfer systems that differentiate among various compounds moving from root to shoot in xylem.

  相似文献   

9.
Photosynthetically fixed 14C was analyzed in various chemical fractions from leaves and stems of cottonwood (Populus deltoides Bartr. ex. Marsh.) during dormancy induction. Dormancy was induced by 8-h photoperiods and 20/14°C temperature regimes. Within 4 weeks under short days, terminal buds were set and leaf expansion and stem elongation had stopped. 14C2 was fed to a leaf at Leaf Plastochron Index 7 for 30 min. Either after this 30 min feeding period or after a 48-h translocation period the plants were sampled, freeze-dried, extracted and analyzed for14C. 14C-fixation decreased during dormancy induction from 60% to 17% of the 3.7 MBq 14C applied at 0 week and 8 weeks, respectively. Percentage distribution of 14C in chemical fractions of source leaves reflected leaf age and translocation inhibition. In rapidly growing plants, considerable 14C was incorporated into leaf protein while most of the soluble14C-sugars were either metabolized or translocated out of the leaf. After terminal bud set, the percentage of 14C in the protein and residue fractions decreased rapidly and that in the sugar fraction increased. Percent distribution in stems closely reflected changing metabolic pathways of carbon flow as influenced by dormancy induction. For example, the 14C in structural carbohydrates decreased in 5 weeks under short days from 65 to less than 10% of the 14C recovered in the chemical fractions, thus indicating cambium inhibition. At the same time the percentage of 14C in starch and sugar increased indicating storage. Short term (after 30 min) incorporation of 14C into the protein and starch fractions of leaves changed relatively little throughout the 8-week induction period. In contrast the turnover rates of these fractions (14C present after 48 h) increased considerably after active growth of the whole plant stopped.  相似文献   

10.
Long-distance transport in plants requires precise knowledge of vascular pathways, and these pathways differ among species. This study examines the 14C translocation pathways in honeylocust (Gleditsia triacanthos L.) and green ash (Fraxinus pennsylvanica Marsh.), species with compound leaves, and compares them with those of cottonwood (Populus deltoides Bartr. ex Marsh.), a species with simple leaves. The stem vasculature of honeylocust conforms to a 2/5 helical phyllotaxy and that of green ash to a decussate phyllotaxy. The plastochron is relatively long in both species – 2.5+ days in honeylocust and 4.5+ days in green ash. Consequently, the transition from upward to downward translocation from mature source leaves is abrupt and occurs close to the apex. Export of 14C from localized treatment positions within a leaf was found to vary both quantitatively and spatially. To determine export patterns, 14CO2 was administered to either individual leaflets of once-pinnate or pinnae of bipinnate leaves of honeylocust, and to either individual veins of simple or leaflets of compound leaves of green ash. Transections of either the petiole or rachis base were then examined for 14C by micro-autoradiography. In all cases, as treatment positions advanced acropetally in the leaves, the bundles translocating 14C were situated more dorsally in the basal petiole and rachis vasculatures. 14C was confined to the right side of the vasculature when structures on the right side of a leaf were treated. Compound leaves of both species mature acropetally. Thus, mature basal pinnae of honeylocust and basal leaflets of green ash translocate acropetally to younger leaf parts that are still rapidly expanding. All translocation pathways, both in the stem and leaf, conformed with vascular organization previously determined by anatomical analyses.  相似文献   

11.
The distribution of 14C from xylem-borne [14C]glutamine, the major nitrogen compound moving in xylem sap of cottonwood (Populus deltoides Bartr. ex Marsh), was followed in rapidly growing shoots with a combination of autoradiographic, microautoradiographic, and radioassay techniques. Autoradiography and 14C analyses of tissues showed that xylem-borne glutamine did not move with the transpiration stream into mature leaves. Instead, most of it was transferred from xylem to phloem in the upper stem and then translocated to young developing tissues. Microautoradiography showed that metaxylem parenchyma, secondary xylem parenchyma, and rays were the major areas of uptake from xylem vessels in the stem. Accumulation in phloem (high 14C concentrations in sieve tubes) took place in internodes subtending recently mature leaves. Little 14C from xylem-borne glutamine was found in phloem of mature leaves, which indicates restricted retransport of glutamine that did enter the leaf. In the primary tissues of the upper stem, most 14C was found in the phloem. Cottonwood stems have an efficient uptake and transfer system that enhances glutamine movement to developing tissues of the upper stem.  相似文献   

12.
Robert Turgeon  J. A. Webb 《Planta》1973,113(2):179-191
Summary The capacity of a growing leaf blade of Cucurbita pepo L. to import 14C-labelled photoassimilate is lost in a basipetal direction. Import into the lamina tip stops when the blade is 10% expanded. Development of the leaf progresses linearly with time and the lamina base stops importing when the blade is 45% expanded. Export capacity also develops basipetally and follows immediately the loss of import capacity, at least in the lamina base. The small amount of material initially exported from the leaf tip is redistributed to the still-importing leaf base, delaying export from the lamina until the blade is 35% expanded. Loss of import capacity by the petiole is both basipetal and dorsoventral. The proximal, adaxial portion of the petiole is the last region to cease importing 14C. Leaves of Beta vulgaris L. and Nicotiana tabacum L. also lose import capacity in a basipetal direction.  相似文献   

13.
During the prebloom and bloom stages, no movement of labeled photosynthates occurred from a shoot of Vitis vinifera L. fed with 14CO2, to an adjacent shoot on the same spur. Movement of labeled assimilates into the unfed shoot was induced when this shoot was sprayed with 2.89 × 10−3m gibberellic acid during the prebloom stage. During the bloom stage darkening or defoliation of the unfed shoot resulted in the import of labeled photosynthates from the adjacent fed shoot. Similarly, movement of 14C into an untreated shoot was induced by removing the terminal 7.5 centimeters and deblossoming the fed shoot. During the berry set stage, translocation of labeled photosynthates from a newly exporting leaf was upwards to the shoot tip, but the direction of movement was reversed by removal of the shoot tip or by darkening or removal of the leaves below the fed leaf. Translocation of photosynthates was predominantly basipetal from a fed leaf near the base of the shoot during the berry set stage, but upward movement was induced by darkening or defoliation of the upper part of the shoot.  相似文献   

14.
Translocation of carbon in powdery mildewed barley   总被引:6,自引:1,他引:5       下载免费PDF全文
This paper compares translocation in healthy and powdery mildew (Erysiphe graminis f. sp. hordei, race CR3) infected barley (Hordeum vulgare, variety Manchuria). The sink-like properties of the powdery mildew infection were used to determine what effect imposing a sink in the midst of normal source tissue (mature primary leaf) had on the translocation process. The pattern of translocation was determined by monitoring the movement of 14C which was photosynthetically incorporated from 14C either by the primary or second leaf. In the healthy primary leaf of barley, 14C fixed in the tip section of the blade was preferentially translocated to the root, whereas 14C fixed in the basal section was primarily translocated to the shoot. When a sporulating powdery mildew infection was present in the mid-section of the primary leaf, 14C fixed in that section or in the acropetal healthy tip section readily accumulated in the infection area. Labeled carbon fixed in the healthy basal section was translocated into the other parts of the plant with only a small fraction moving acropetally into the infected mid-section. The 14C fixed by the second leaf was translocated to the root and younger shoot with very little entering the primary leaf. The presence of the mildew infection did not alter this pattern.  相似文献   

15.
Summary We examined the capacity of the galling aphid, Pemphigus betae, to manipulate the sink-source translocation patterns of its host, narrowleaf cottonwood (Populus angustifolia). A series of 14C-labeling experiments and a biomass allocation experiment showed that P. betae galls functioned as physiologic sinks, drawing in resources from surrounding plant sources. Early gall development was dependent on aphid sinks increasing allocation from storage reserves of the stem, and later development of the progeny within the gall was dependent on resources from the galled leaf blade and from neighboring leaves. Regardless of gall position within a leaf, aphids intercepted 14C exported from the galled leaf (a non-mobilized source). However, only aphid galls at the most basal site of the leaf were strong sinks for 14C fixed in neighboring leaves (a mobilized source). Drawing resources from neighboring leaves represents active herbivore manipulation of normal host transport patterns. Neighboring leaves supplied 29% of the 14C accumulating in aphids in basal galls, while only supplying 7% to aphids in distal galls. This additional resource available to aphids in basal galls can account for the 65% increase in progeny produced in basal galls compared to galls located more distally on the leaf and limited to the galled leaf as a food resource. Developing furits also act as skins and compete with aphid-induced sinks for food supply. Aphid success in producing galls was increased 31% when surrounding female catkins were removed.  相似文献   

16.
The topologic arrangement of petiolar bundles varies within the length of the cottonwood petiole. Each petiolar bundle is formed by the subdivision and aggregation of acropetally differentiating subsidiary bundles in a predictable pattern. The subsidiary bundles provide vascular continuity between the stem and specific portions of the leaf lamina. Spot-labeling of individual veins with 14CO2, freeze substitution, and microautoradiography were used to establish the relation between the secondary veins of the lamina and the vasculature of the petiole. Within the petiole vasculature each subsidiary bundle was continuous with a specific portion of the lamina and seemed to have a separate function. Subsidiary bundles continuous with the central leaf trace were closely related functionally to the tip region of the lamina, while the subsidiary bundles continuous with the lateral leaf traces were functionally related to the middle and basal portions of the lamina.  相似文献   

17.
Partitioning and transport of recently fixed photosynthate was examined following 14CO2 pulse-labeling of intact, attached leaves of Salvia splendens L. maintained in an atmosphere of 300 microliters per liter CO2 and 20, 210, or 500 milliliters per liter O2. Under conditions of increasing O2 (210, 500 milliliters per liter), a smaller percentage of the recently fixed 14C in the leaf was allocated to starch, whereas a greater percentage of the fixed 14C appeared in amino acids, particularly serine. The increase in 14C in amino acids was reflected in material exported from source leaves. A higher percentage of 14C in serine, glycine, and glutamate was recovered in petiole extracts when source leaves were maintained under elevated O2 levels. Although pool sizes of these amino acids were increased in both the leaves and petioles with increasing photorespiratory activity, no significant changes in either 14C distribution or concentration of transport sugars (i.e. stachyose, sucrose, verbascose) were observed. The data indicate that, in addition to being recycled intracellularly into Calvin cycle intermediates, amino acids produced during photorespiration may also serve as transport metabolites, allowing the mobilization of both carbon and nitrogen from the leaf under conditions of limited photosynthesis.  相似文献   

18.
Translocation of Photosynthate in Curly Top Virus-infected Tomatoes   总被引:1,自引:0,他引:1       下载免费PDF全文
Photosynthate translocation in single leaflets of healthy and curly top virus-infected tomatoes was investigated using 14C as a marker. The amount of radioactivity found in plant parts not exposed to 14CO2 was substantially lower in diseased than in healthy plants. The time lag for the appearance of 14C in the petiole was considerably longer in the infected plants than in the healthy. The kinetics of disappearance of 14C from the lamina during the 24-hour period following labeling showed a strong retention of recent assimilates within the diseased leaf, not accompanied by increased immobilization into insoluble forms. Sucrose was the predominant compound participating in photosynthate transport in both healthy and diseased leaves. The amount of 14CO2 fixed was approximately 40% lower in curly top virus-infected leaves than in healthy leaves.  相似文献   

19.
The leaf plastochron index (LPI) was used to interpret the anatomical changes during leaf ontogeny in the developing leaf zone of young cottonwood trees and to relate leaf anatomical structure to physiological function. The lamina tip matured precociously with respect to both structure and function. Below the lamina tip the intercellular spaces, stomates, and minor veins matured basipetally, while the major veins developed acropetally. Ontogenetically, maturation progressed from LPI –1.0, which was anatomically immature except for its lamina tip, to the first fully expanded leaf at LPI 6.0, which was anatomically mature. Physiological maturity also occurred at LPI 6.0, thus signifying a transition with respect to both structure and function. By evaluating the anatomical observations in conjunction with physiological data collected at comparable LPI's in other experiments, it could be demonstrated that anatomical development was a limiting factor in photosynthesis and translocation of assimilates.  相似文献   

20.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号