首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the hippocampus, extracellular signal-regulated kinase (ERK) and the non-receptor protein proline-rich tyrosine kinase 2 (PYK2) are activated by depolarization and involved in synaptic plasticity. Both are also activated under pathological conditions following ischemia, convulsions, or electroconvulsive shock. Although in non-neuronal cells PYK2 activates ERK through the recruitment of Src-family kinases (SFKs), the link between these pathways in the hippocampus is not known. We addressed this question using K(+)-depolarized rat hippocampal slices. Depolarization increased the phosphorylation of PYK2, SFKs, and ERK. These effects resulted from Ca(2+) influx through voltage-gated Ca(2+) channels and were diminished by GF109203X, a protein kinase C inhibitor. Inhibition of SFKs with PP2 decreased PYK2 tyrosine phosphorylation dramatically, but not its autophosphorylation on Tyr-402. Moreover, PYK2 autophosphorylation and total tyrosine phosphorylation were profoundly altered in fyn-/- mice, revealing an important functional relationship between Fyn and PYK2 in the hippocampus. In contrast, ERK activation was unaltered by PP2, Fyn knock-out, or LY294002, a phosphatidyl-inositol-3-kinase inhibitor. ERK activation was prevented by MEK inhibitors that had no effect on PYK2. Immunofluorescence of hippocampal slices showed that PYK2 and ERK were activated in distinct cellular compartments in somatodendritic regions and nerve terminals, respectively, with virtually no overlap. Activation of ERK was critical for the rephosphorylation of a synaptic vesicle protein, synapsin I, following depolarization, underlining its functional importance in nerve terminals. Thus, in hippocampal slices, in contrast to cell lines, depolarization-induced activation of non-receptor tyrosine kinases and ERK occurs independently in distinct cellular compartments in which they appear to have different functional roles.  相似文献   

2.
In vascular smooth muscle cells (VSMCs), the focal adhesion kinase-related tyrosine kinase PYK2/CAKbeta is activated by vascular mitogens. Because reactive oxygen species (ROS) are assumed to mediate mitogenic signals by these agonists, we examined the possible link between ROS and PYK2 in cultured rat VSMCs. Here we present several lines of evidence showing that PYK2 is activated by ROS in VSMCs. The inhibitory effect of an antioxidant, N-acetyl-cysteine, on PYK2 activation by its specific agonists further suggests the pivotal role of PYK2 in vascular remodeling associated with enhanced ROS production.  相似文献   

3.
The synthesis, in vitro properties, and in vivo pharmacokinetics for a series of sulfoximine-substituted trifluoromethylpyrimidines as inhibitors of proline-rich tyrosine kinase, a target for the possible treatment of osteoporosis, are described. These compounds were prepared as surrogates of the corresponding sulfone compound 1. Sulfone 1 was an attractive PYK2 lead compound; however, subsequent studies determined this compound possessed high dofetilide binding, which is an early indicator of cardiovascular safety. Surprisingly, the corresponding sulfoximine analogs displayed significantly lower dofetilide binding, which, for N-methylsulfoximine (S)-14a, translated to lower activity in a patch clamp hERG K+ ion channel screen. In addition, compound (S)-14a shows good oral exposure in a rat pharmacokinetic model.  相似文献   

4.
The mechanisms involved in the mechanical loading-induced increase in bone formation remain unclear. In this study, we showed that cyclic strain (CS) (10 min, 1% stretch at 0.25 Hz) stimulated the proliferation of overnight serum-starved ROS 17/2.8 osteoblast-like cells plated on type I collagen-coated silicone membranes. This increase was blocked by MEK inhibitor PD-98059. Signaling events were then assessed 0 min, 30 min, and 4 h after one CS period with Western blotting and coimmunoprecipitation. CS rapidly and time-dependently promoted phosphorylation of both ERK2 at Tyr-187 and focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, leading to the activation of the Ras/Raf/MEK pathway. Cell transfection with FAK mutated at Tyr-397 completely blocked ERK2 Tyr-187 phosphorylation. Quantitative immunofluorescence analysis of phosphotyrosine residues showed an increase in focal adhesion plaque number and size in strained cells. CS also induced both Src-Tyr-418 phosphorylation and Src to FAK association. Treatment with the selective Src family kinase inhibitor pyrazolopyrimidine 2 did not prevent CS-induced FAK-Tyr-397 phosphorylation suggesting a Src-independent activation of FAK. CS also activated proline-rich tyrosine kinase 2 (PYK2), a tyrosine kinase highly homologous to FAK, at the 402 phosphorylation site and promoted its association to FAK in a time-dependent manner. Mutation of PYK2 at the Tyr-402 site prevented the ERK2 phosphorylation only at 4 h. Intra and extracellular calcium chelators prevented PYK2 activation only at 4 h. In summary, our data showed that osteoblast response to mitogenic CS was mediated by MEK pathway activation. The latter was induced by ERK2 phosphorylation under the control of FAK and PYK2 phosphorylation orchestrated in a time-dependent manner.  相似文献   

5.
The receptor tyrosine kinase (RTK) Tie2 is expressed predominantly on endothelial cells. Tie2 is critical for vasculogenesis during development and could be important for maintaining endothelial cell survival and integrity in adult blood vessels. Although most RTKs are activated by shear stress in the absence of ligand activation, the effect of shear stress on Tie2 is unknown. Therefore, we examined the effect of shear stress on Tie2 phosphorylation in primary cultured endothelial cells. Interestingly, shear stress (20 dyne/cm(2)) produced a rapid, marked, and sustained Tie2 phosphorylation, while it produced a rapid but slight and transient phosphorylation of insulin receptor and VEGF receptor 2 (Flk1). In addition, Tie2 phosphorylation in response to shear stress was velocity-dependent, while phosphorylation of insulin receptor and Flk1 was not. Shear stress also produced Akt phosphorylation in a time-, velocity-, and PI 3-kinase-dependent manner. Accordingly, shear stress suppressed serum deprivation-induced endothelial cell apoptosis. Taken together, our results indicated that activation of Tie2/PI 3-kinase/Akt in response to shear stress could be an important signaling cascade for maintaining endothelial survival and integrity in blood vessels.  相似文献   

6.
Prolin-rich kinase 2 (PYK2) is a nonreceptor tyrosine kinase related to the focal adhesion kinase (FAK) p125(FAK). PYK2 is rapidly phosphorylated on tyrosine residues in response to various stimuli, such as tumor necrosis factor-alpha (TNF-alpha), changes in osmolarity, elevation in intracellular calcium concentration, angiotensin, and UV irradiation. PYK2 has ligand sequences for Src homology 2 and 3 (SH-2 and SH-3), and has binding sites for paxillin and p130(cas). Activation of PYK2 leads to modulation of ion channel function, phosphorylation of tyrosine residues, and activation of the MAP kinase signaling pathways. Immunocytochemistry shows that PYK2 is present in mouse germinal and Sertoli cells (ser). Northern blot and immunoprecipitation analysis demonstrate that, among germinal cells, PYK2 is more abundant in spermatocytes (spc) and spermatids (spt); in addition, immunofluorescence analysis clearly shows that the diffuse cytoplasmic localization of PYK2 changes in a specific cellular compartment in spt and spermatozoa.  相似文献   

7.
The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.  相似文献   

8.
Glucose serves as both a nutrient and regulator of physiological and pathological processes. Presently, we found that glucose and certain sugars rapidly activated extracellular signal-regulated kinase (ERK) by a mechanism that was: (a) independent of glucose uptake/metabolism and protein kinase C but nevertheless cytochalasin B-inhibitable; (b) dependent upon proline-rich tyrosine kinase-2 (PYK2), GRB2, SOS, RAS, RAF, and MEK1; and (c) amplified by overexpression of the Glut1, but not Glut2, Glut3, or Glut4, glucose transporter. This amplifying effect was independent of glucose uptake but dependent on residues 463-468, IASGFR, in the Glut1 C terminus. Accordingly, glucose effects on ERK were amplified by expression of Glut4/Glut1 or Glut2/Glut1 chimeras containing IASGFR but not by Glut1/Glut4 or Glut1/Glut2 chimeras lacking these residues. Also, deletion of Glut1 residues 469-492 was without effect, but mutations involving serine 465 or arginine 468 yielded dominant-negative forms that inhibited glucose-dependent ERK activation. Glucose stimulated the phosphorylation of tyrosine residues 402 and 881 in PYK2 and binding of PYK2 to Myc-Glut1. Our findings suggest that: (a) glucose activates the GRB2/SOS/RAS/RAF/MEK1/ERK pathway by a mechanism that requires PYK2 and residues 463-468, IASGFR, in the Glut1 C terminus and (b) Glut1 serves as a sensor, transducer, and amplifier for glucose signaling to PYK2 and ERK.  相似文献   

9.
10.
A screening campaign of a diverse collection of ~250,000 small molecule compounds was performed to identify inhibitors of proline-rich tyrosine kinase 2 (Pyk2) with potential osteogenic activity in osteoblast cells. Compounds were prioritized based on selectivity following a counter-screen against focal adhesion kinase (FAK), a closely related kinase. 4-Amino and 5-aryl substituted pyridinone series were identified that showed strong biochemical potency against Pyk2 and up to 3700-fold selectivity over FAK. Modeling analysis suggested that structural differences in the substrate binding cleft could explain the high selectivity of these chemical series against FAK. Representative compounds from each series showed inhibition of Pyk2 autophosphorylation in 293T cells (IC50 ~0.11 μM), complete inhibition of endogenous Pyk2 in A7r5 cells and increased levels of osteogenic markers in MC3T3 osteoblast cells (EC50’s ~0.01 μM). These results revealed a new class of compounds with osteogenic-inducing activity in osteoblast cells and a starting point for the development of more potent and selective Pyk2 inhibitors.  相似文献   

11.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (Ang II) elicits a hypertrophic growth response characterized by an increase in protein synthesis in the absence of DNA synthesis and cell proliferation. Intracellular signaling mechanisms linking angiotensin type I receptor activation to protein synthesis in VSMC have not been fully characterized. The present study investigates the role of the nonreceptor proline-rich tyrosine kinase 2 (PYK2) in Ang II-induced VSMC protein synthesis and in the regulation of two signaling pathways that have been implicated in the control of protein synthesis, the extracellular signal-regulated kinase (ERK1/2) and the phosphatidylinositol 3-kinase/Akt pathways. PYK2 antisense oligonucleotides were used to down-regulate PYK2 expression in cultured VSMC. An 80% down-regulation in PYK2 expression resulted in an approximately 80% inhibition of ERK1/2 (3.8 +/- 1.3 versus 16.6 +/- 1.8), p70S6 kinase (1.03 +/- 0.03 versus 3.8 +/- 0.5), and Akt activation (3.0 +/- 0.8 versus 16.0 +/- 1.0) by Ang II. Furthermore, PYK2 down-regulation resulted in a complete inhibition of Ang II-induced VSMC protein synthesis. These data conclusively identify PYK2 as an upstream regulator of both the ERK1/2 and the phosphatidylinositol 3-kinase/Akt pathways that are involved in Ang II-induced VSMC protein synthesis.  相似文献   

12.
Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2   总被引:2,自引:0,他引:2  
Glycogen synthase kinase 3beta (GSK3beta) is a Ser/Thr kinase that is involved in numerous cellular activities. GSK3beta is activated by tyrosine phosphorylation. However, very little is known about the tyrosine kinases that are responsible for phosphorylating GSK3beta. In this report, we investigated the ability of the calcium-dependent tyrosine kinase, proline-rich tyrosine kinase 2 (PYK2) to tyrosine phosphorylate GSK3beta. In transfected CHO cells, it was demonstrated that PYK2 tyrosine phosphorylates GSK3beta in situ. The two kinases also coimmunoprecipitated. Furthermore, GSK3beta was tyrosine phosphorylated in vitro by an active, wild type PYK2, but not by the inactive, kinase dead form of PYK2. Therefore, this study is the first to demonstrate that GSK3beta is a substrate of PYK2 both in vitro and in situ.  相似文献   

13.
Fibronectin fragments (FN-f), including the 110-kDa fragment that binds the alpha5beta1 integrin, stimulate collagenase-3 (MMP-13) production and cartilage destruction. In the present study, treatment of chondrocytes with the 110-kDa FN-f or an activating antibody to the alpha5beta1 integrin was found to increase tyrosine autophosphorylation (Tyr-402) of the proline-rich tyrosine kinase-2 (PYK2) without significant change in autophosphorylation (Tyr-397) of focal adhesion kinase (FAK). The tyrosine kinase inhibitor tyrphostin A9, shown previously to block a PYK2-dependent pathway, blocked the FN-f-stimulated increase in MMP-13, whereas tyrphostin A25 did not. FN-f-stimulated PYK2 phosphorylation and MMP-13 production was also blocked by reducing intracellular calcium levels. Adenovirally mediated overexpression of wild type but not mutant PYK2 resulted in increased MMP-13 production. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate stimulated PYK2 phosphorylation and MMP-13 production. MMP-13 expression stimulated by either phorbol 12-myristate 13-acetate or FN-f was blocked by PKC inhibitors including the PKCdelta inhibitor rottlerin. Furthermore, PKCdelta translocation from cytosol to membrane was noted within 5 min of stimulation with FN-f. Immortalized human chondrocytes, transiently transfected with MMP-13 promoter-luciferase reporter constructs, showed increased promoter activity after FN-f treatment that was inhibited by co-transfection with either of two dominant negative mutants of PYK2 (Y402F and K457A). No inhibition was seen after cotransfection with wild type PYK2, a dominant negative of FAK (FRNK) or empty vector plasmid. FN-f-stimulated MMP-13 promoter activity was also inhibited by chemical inhibitors of ERK, JNK, and p38 mitogen-activated protein (MAP) kinases or by co-transfection of dominant negative MAP kinase mutant constructs. These studies have identified a novel pathway for the MAP kinase regulation of MMP-13 production which involves FN-f stimulation of the alpha5beta1 integrin and activation of the nonreceptor tyrosine kinase PYK2 by PKC, most likely PKCdelta  相似文献   

14.
We showed that cyclic strain (CS) of osteoblastic cells induced tyrosine phosphorylation of two homologous tyrosine kinases FAK and PYK2, and of two homologous adaptor proteins paxillin and Hic5, with similar kinetics. Immunostaining showed that all four proteins were localized to focal contacts in controls. In contrast, the dynamics of their subcellular localization observed after CS differed. While FAK and paxillin remained at the focal contact, Hic-5 and PYK2 translocated outside ventral focal contacts as early as 30 min after CS and were sequestered by the cytoskeleton. Co-immunoprecipitation showed that the association of PYK2/Hic-5 and PYK2/FAK increased with time after strain while that of paxillin and Hic-5 decreased. Altogether these results suggested that CS regulates focal contact activity in osteoblasts by modulating PYK2-containing complexes in particular by shuttling out of the focal contact the adaptor Hic-5 and favoring the anchorage of FAK within contacts.  相似文献   

15.
16.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   

17.
18.
19.
Calcium-sensitive tyrosine kinase Pyk2 has been implicated in the regulation of ion channels, cellular adhesion, and mitogenic and hypertrophic reactions. In this study, we have investigated the regulation of Pyk2 by angiotensin II (Ang II) in pulmonary vein endothelial cells. We found that the Ang II-induced tyrosine phosphorylation of Pyk2, which requires the activity of Src family kinase, was specifically regulated by the Src family kinase member, Yes kinase. Moreover, we identified for the first time the constitutive association of Pyk2 with an Src homology 2 (SH2) domain-containing tyrosine phosphatase SHP-2. SHP-2 interacts with Pyk2 through a region other than its SH2 domains. Pyk2 can be dephosphorylated in vitro in SHP-2 immunoprecipitates and in intact cells expressing an NH(2) terminus-truncated form of SHP-2, which lacks the two SH2 domains but has an enhanced phosphatase activity. Ang II activates the endogenous SHP-2. Finally, the SHP-2-mediated dephosphorylation of Pyk2 correlates with the negative effect of SHP-2 on the Ang II-induced activation of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase. Thus, the balance of Pyk2 tyrosine phosphorylation in response to Ang II is controlled by Yes kinase and by a tyrosine phosphatase SHP-2 in endothelial cells.  相似文献   

20.
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号