首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple functions of p27(Kip1) and its alterations in tumor cells: a review   总被引:19,自引:0,他引:19  
Cyclin-dependent kinases (CDKs), together with cyclins, their regulatory subunits, govern cell-cycle progression in eukaryotic cells. p27(Kip1) is a member of a family of CDK inhibitors (CDIs) that bind to cyclin/CDK complexes and arrest cell division. There is considerable evidence that p27(Kip1) plays an important role in multiple fundamental cellular processes, including cell proliferation, cell differentiation, and apoptosis. Moreover, p27(Kip1) is a putative tumor-suppressor gene that appears to play a critical role in the pathogenesis of several human malignancies and its reduced expression has been shown to correlate with poor prognosis in cancer patients. This study reviews current information on the functions of p27(Kip1), its abnormalities found in human tumors, and the possible clinical implications of these findings with respect to the management of cancer patients.  相似文献   

2.
v-cyclin encoded by Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV or HHV8) associates with cellular cyclin-dependent kinase 6 (CDK6) to form a kinase complex that promotes cell-cycle progression, but can also induce apoptosis in cells with high levels of CDK6. Here we show that whereas HHV8-encoded v-Bcl-2 protects against this apoptosis, cellular Bcl-2 has lost its anti-apoptotic potential as a result of an inactivating phosphorylation in its unstructured loop region. Moreover, we identify Bcl-2 as a new substrate for v-cyclin-CDK6 in vitro, and show that it is present in a complex with CDK6 in cell lysates. A Bcl-2 mutant with a S70A S87A double substitution in the loop region is not phosphorylated and provides resistance to apoptosis, indicating that inactivation of Bcl-2 by v-cyclin-CDK6 may be required for the observed apoptosis. Furthermore, the identification of phosphorylated Bcl-2 in HHV8-positive Kaposi's sarcoma indicates that HHV8-mediated interference with host apoptotic signalling pathways may encourage the development of Kaposi's sarcoma.  相似文献   

3.
Progression through the eukaryotic cell cycle is driven by the orderly activation of cyclin-dependent kinases (CDKs). For activity, CDKs require association with a cyclin and phosphorylation by a separate protein kinase at a conserved threonine residue (T160 in CDK2). Here we present the structure of a complex consisting of phosphorylated CDK2 and cyclin A together with an optimal peptide substrate, HHASPRK. This structure provides an explanation for the specificity of CDK2 towards the proline that follows the phosphorylatable serine of the substrate peptide, and the requirement for the basic residue in the P+3 position of the substrate. We also present the structure of phosphorylated CDK2 plus cyclin A3 in complex with residues 658-668 from the CDK2 substrate p107. These residues include the RXL motif required to target p107 to cyclins. This structure explains the specificity of the RXL motif for cyclins.  相似文献   

4.
The Kaposi's sarcoma-associated human herpesvirus 8 (KSHV/HHV8) encodes a protein similar to cellular cyclins. This cyclin is most closely related to cellular D-type cyclins, but biochemically it behaves atypically in various respects. Complexes formed between the viral cyclin and the cyclin-dependent kinase subunit, cdk6, can phosphorylate a wider range of substrates and are resistant to cdk inhibitory proteins. We show here that the KSHV-cyclin-cdk6 complex phosphorylates p27(Kip) on a C-terminal threonine that is implicated in destabilization of this cdk inhibitor. Expression of the viral cyclin in tissue culture cells overcomes a cell cycle block by p27(Kip). However, full cell-cycle transit of these cells appears to depend on C-terminal phosphorylation of p27(Kip) and seems to involve transactivation of other cellular cyclin-dependent kinases. A p27(Kip)-phosphorylating cdk6 complex exists in cell lines derived from primary effusion lymphoma and in Kaposi's sarcoma, this indicating that virally induced p27(Kip) degradation may occur in KSHV-associated tumours.  相似文献   

5.
6.
Cyclin from herpesvirus saimiri (Vcyclin) preferentially forms complexes with cyclin-dependent kinase 6 (CDK6) from primate host cells. These complexes show higher kinase activity than host cell CDKs in complex with cellular cyclins and are resistant to cyclin-dependent inhibitory proteins (CDKIs). The crystal structure of human CDK6--Vcyclin in an active state was determined to 3.1 A resolution to better understand the structural basis of CDK6 activation by viral cyclins. The unphosphorylated CDK6 in complex with Vcyclin has many features characteristic of cyclinA-activated, phosphorylated CDK2. There are, however, differences in the conformation at the tip of the T-loop and its interactions with Vcyclin. Residues in the N-terminal extension of Vcyclin wrap around the tip of the CDK6 T-loop and form a short beta-sheet with the T-loop backbone. These interactions lead to a 20% larger buried surface in the CDK6--Vcyclin interface than in the CDK2--cyclinA complex and are probably largely responsible for the specificity of Vcyclin for CDK6 and resistance of the complex to inhibition by INK-type CDKIs.  相似文献   

7.
Arooz T  Yam CH  Siu WY  Lau A  Li KK  Poon RY 《Biochemistry》2000,39(31):9494-9501
Cyclins and cyclin-dependent kinases (CDKs) are key regulators of the human cell cycle. Here we have directly measured the concentrations of the G(1) and G(2) cyclins and their CDK partners in highly synchronized human cervical carcinoma cells (HeLa). To determine the exact concentrations of cyclins and CDKs in the cell extracts, we developed a relatively simple method that combined the use of (35)S-labeled standards produced in rabbit reticulocyte lysates and immunoblotting with specific antibodies. Using this approach, we formally demonstrated that CDC2 and CDK2 are in excess of their cyclin partners. We found that the concentrations of cyclin A2 and cyclin B1 (at their peak levels in the G(2) phase) were about 30-fold less than that of their partner CDC2. The peak levels of cyclin A2 and cyclin E1, at the G(2) phase and G(1) phase, respectively, were only about 8-fold less than that of their partner CDK2. These ratios are in good agreement with size fractionation analysis of the relative amount of monomeric and complexed forms of CDC2 and CDK2 in the cell. All the cyclin A2 and cyclin E1 are in complexes with CDC2 and CDK2, but there are some indications that a significant portion of cyclin B1 may not be in complex with CDC2. Furthermore, we also demonstrated that the concentration of the CDK inhibitor p21(CIP1/WAF1) induced after DNA damage is sufficient to overcome the cyclin-CDK2 complexes in MCF-7 cells. These direct quantitations formally confirmed the long-held presumption that CDKs are in excess of the cyclins in the cell. Moreover, similar approaches can be used to measure the concentration of any protein in cell-free extracts.  相似文献   

8.
Mitotic cyclins A and B contain a conserved N-terminal helix upstream of the cyclin box fold that contributes to a significant interface between cyclin and cyclin-dependent kinase (CDK). To address its contribution on cyclin-CDK interaction, we have constructed mutants in conserved residues of the N-terminal helix of Xenopus cyclins B2 and A1. The mutants showed altered binding affinities to Cdc2 and/or Cdk2. We also screened for mutations in the C-terminal lobe of CDK that exhibited different binding affinities for the cyclin-CDK complex. These mutations were at residues that interact with the cyclin N-terminal helix motif. The cyclin N-terminal helix mutations have a significant effect on the interaction between the cyclin-CDK complex and specific substrates, Xenopus Cdc6 and Cdc25C. These results suggest that the N-terminal helix of mitotic cyclins is required for specific interactions with CDKs and that to interact with CDK, specific substrates Cdc6 and Cdc25C require the CDK to be associated with a cyclin. The interaction between the cyclin N-terminal helix and the CDK C-terminal lobe may contribute to binding specificity of the cyclin-CDK complex.  相似文献   

9.
Cell-cycle transitions in higher eukaryotes are regulated by different cyclin-dependent kinases (CDKs) and their activating cyclin subunits. Based on pioneering findings that a dominant-negative mutation of CDK1 blocks the cell cycle at G2-M phase, whereas dominant-negative CDK2 inhibits the transition into S phase, a model of cell-cycle control has emerged in which each transition is regulated by a specific subset of CDKs and cyclins. Recent work with gene-targeted mice has led to a revision of this model. We discuss cell-cycle control in light of overlapping and essential functions of the different CDKs and cyclins.  相似文献   

10.
BACKGROUND: Several checkpoint pathways employ Wee1-mediated inhibitory tyrosine phosphorylation of cyclin-dependent kinases (CDKs) to restrain cell-cycle progression. Whereas in vertebrates this strategy can delay both DNA replication and mitosis, in yeast cells only mitosis is delayed. This is particularly surprising because yeasts, unlike vertebrates, employ a single family of cyclins (B type) and the same CDK to promote both S phase and mitosis. The G2-specific arrest could be explained in two fundamentally different ways: tyrosine phosphorylation of cyclin/CDK complexes could leave sufficient residual activity to promote S phase, or S phase-promoting cyclin/CDK complexes could somehow be protected from checkpoint-induced tyrosine phosphorylation. RESULTS: We demonstrate that in Saccharomyces cerevisiae, several cyclin/CDK complexes are protected from inhibitory tyrosine phosphorylation, allowing Clb5,6p to promote DNA replication and Clb3,4p to promote spindle assembly, even under checkpoint-inducing conditions that block nuclear division. In vivo, S phase-promoting Clb5p/Cdc28p complexes were phosphorylated more slowly and dephosphorylated more effectively than were mitosis-promoting Clb2p/Cdc28p complexes. Moreover, we show that the CDK inhibitor (CKI) Sic1p protects bound Clb5p/Cdc28p complexes from tyrosine phosphorylation, allowing the accumulation of unphosphorylated complexes that are unleashed when Sic1p is degraded to promote S phase. The vertebrate CKI p27(Kip1) similarly protects Cyclin A/Cdk2 complexes from Wee1, suggesting that the antagonism between CKIs and Wee1 is evolutionarily conserved. CONCLUSIONS: In yeast cells, the combination of CKI binding and preferential phosphorylation/dephosphorylation of different B cyclin/CDK complexes renders S phase progression immune from checkpoints acting via CDK tyrosine phosphorylation.  相似文献   

11.
Cyclin D-dependent kinases act as mitogen-responsive, rate-limiting controllers of G1 phase progression in mammalian cells. Two novel members of the mouse INK4 gene family, p19 and p18, that specifically inhibit the kinase activities of CDK4 and CDK6, but do not affect those of cyclin E-CDK2, cyclin A-CDK2, or cyclin B-CDC2, were isolated. Like the previously described human INK4 polypeptides, p16INK4a/MTS1 and p15INK4b/MTS2, mouse p19 and p18 are primarily composed of tandemly repeated ankyrin motifs, each ca. 32 amino acids in length, p19 and p18 bind directly to CDK4 and CDK6, whether untethered or in complexes with D cyclins, and can inhibit the activity of cyclin D-bound cyclin-dependent kinases (CDKs). Although neither protein interacts with D cyclins or displaces them from preassembled cyclin D-CDK complexes in vitro, both form complexes with CDKs at the expense of cyclins in vivo, suggesting that they may also interfere with cyclin-CDK assembly. In proliferating macrophages, p19 mRNA and protein are periodically expressed with a nadir in G1 phase and maximal synthesis during S phase, consistent with the possibility that INK4 proteins limit the activities of CDKs once cells exit G1 phase. However, introduction of a vector encoding p19 into mouse NIH 3T3 cells leads to constitutive p19 synthesis, inhibits cyclin D1-CDK4 activity in vivo, and induces G1 phase arrest.  相似文献   

12.
Cancer prevention is a global priority, but history indicates that the journey towards achieving the goal is difficult. Various cyclin dependent kinase complexes (CDKs/cyclins) operate as major cell signaling components in all stages of cell cycle. CDK/cyclin protein complexes, regulating the cell cycle, are conserved during evolution. In cancer cells, cell division is uncontrolled and CDKs/cyclins become ‘check-points’ or targets. Keeping this in view the proteins cyclin C, cyclin D2, CDKN1C, and Growth Arrest and DNA Damage (GADD45α) which play a major role in regulating CDK/cyclin complexes and operate in the initial stages of cell cycle (G0 phase–S phase), have been identified as promising targets. Targeting critical regulators of cell-cycle signaling components by applying modern computational techniques is projected to be a potential tool for future cancer research.  相似文献   

13.
In order to analyze dexamethasone effects on peripheral blood lymphocyte proliferation, we defined various experimental conditions: dexamethasone introduced (i) at the time of phytohemagglutinin stimulation, (ii) 48 h after the beginning of phytohemagglutinin stimulation, and (iii) on unstimulated lymphocytes. In stimulated lymphocytes, we observed an early G1 accumulation (P< 0.005), a delayed increase in the duration of S-phase (P< 0.03), and a consequent increase in cell-cycle duration. The expression of several cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs) was modified. Cyclin D3, CDK4, and CDK6 involved in G1-phase control were significantly decreased under dexamethasone treatment whatever the level of stimulation of lymphocytes (stimulated or unstimulated PBL). Cyclin E and CDK2, acting in G1/S-phase transition and S-phase regulation, decreased in stimulated lymphocytes before any modification of S-phase (P< 0.002). The expression of CKIs, mainly of p27Kip1, appeared to vary with the degree of cell stimulation: a decrease was observed on treated unstimulated lymphocytes, while p27Kip1increased in dexamethasone-treated cells during stimulation. Our results indicate sequential modifications of the cell-cycle regulation by dexamethasone starting with an action on G1 followed by S-phase control modifications. The protein analysis pinpoints the major complexes concerned: CDK4 and CDK6/cyclin D are mainly involved in G1-phase modifications, while CDK2 and its partner, cyclin E, might be specifically involved in the lengthening of S-phase. The variations observed for p27Kip1might amplify the functional effects of dexamethasone on kinasic complexes.  相似文献   

14.
Upton JW  Speck SH 《Journal of virology》2006,80(24):11946-11959
Gamma-2 herpesviruses encode homologues of mammalian D-type cyclins (v-cyclins), which likely function to manipulate the cell cycle, thereby providing a cellular environment conducive to virus replication and/or reactivation from latency. We have previously shown that the v-cyclin of murine gammaherpesvirus 68 is an oncogene that binds and activates cellular cyclin-dependent kinases (CDKs) and is required for efficient reactivation from latency. To determine the contribution of v-cyclin-mediated cell cycle regulation to the viral life cycle, recombinant viruses in which specific point mutations (E133V or K104E) were introduced into the v-cyclin open reading frame were generated, resulting in the disruption of CDK binding and activation. While in vitro growth of these mutant viruses was unaffected, lytic replication in the lungs following low-dose intranasal inoculation was attenuated for both mutants deficient in CDK binding as well as virus in which the entire v-cyclin open reading frame was disrupted by the insertion of a translation termination codon. This replication defect was not apparent in spleens of mice following intraperitoneal inoculation, suggesting a cell type- and/or route-specific dependence on v-cyclin-CDK interactions during the acute phase of virus infection. Notably, although a v-cyclin-null virus was highly attenuated for reactivation from latency, the E133V v-cyclin CDK-binding mutant exhibited only a modest defect in virus reactivation from splenocytes, and neither the E133V nor K104E v-cyclin mutants were compromised in reactivation from peritoneal exudate cells. Taken together, these data suggest that lytic replication and reactivation in vivo are differentially regulated by CDK-dependent and CDK-independent functions of v-cyclin, respectively.  相似文献   

15.
Hwang SG  Song SM  Kim JR  Park CS  Song WK  Chun JS 《IUBMB life》2007,59(2):90-98
This study examined whether cell cycle regulatory proteins, such as cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors, regulate type II collagen expression and mediate interlukin-1 (IL-1beta)-induced suppression of type II collagen expression in articular chondrocytes. IL-1beta inhibited type II collagen expression, but activated CDK6. Ectopic expression of CDK2 did not alter type II collagen expression. However, overexpression of CDK6 inhibited type II collagen expression, whereas inhibition of CDK6 activity blocked IL-1beta-induced suppression of type II collagen expression. IL-1beta upregulated the expression of cyclin D1, which is known to activate CDK6. In turn, overexpression of cyclin D1 suppressed type II collagen expression. In contrast to cyclin D1, IL-1beta triggered down-regulation of the CDK inhibitor, p21. Overexpression of p21 blocked IL-1beta- or CDK6-induced suppression of type II collagen expression. Our results collectively indicate that CDK6/cyclin D1/p21 complex regulates type II collagen expression in articular chondrocytes.  相似文献   

16.
The cell cycle in mammalian cells is regulated by a series of cyclins and cyclin-dependent kinases (CDKs). The G1/S checkpoint is mainly dictated by the kinase activities of the cyclin D-CDK4 and/or cyclin D-CDK6 complex and the cyclin E-CDK2 complex. These G1 kinases can in turn be regulated by cell cycle inhibitors, which may cause the cells to arrest at the G1 phase. In T-cell hybridomas, addition of anti-T-cell receptor antibody results not only in G1 arrest but also in apoptosis. In searching for a protein(s) which might interact with Nur77, an orphan steroid receptor required for activation-induced apoptosis of T-cell hybridomas, we have cloned a novel human and mouse CDK inhibitor, p19. The deduced p19 amino acid sequence consists of four ankyrin repeats with 48% identity to p16. The human p19 gene is located on chromosome 19p13, distinct from the positions of p18, p16, and p15. Its mRNA is expressed in all cell types examined. The p19 fusion protein can associate in vitro with CDK4 but not with CDK2, CDC2, or cyclin A, B, E, or D1 to D3. Addition of p19 protein can lead to inhibition of the in vitro kinase activity of cyclin D-CDK4 but not that of cyclin E-CDK2. In T-cell hybridoma DO11.10, p19 was found in association with CDK4 and CDK6 in vivo, although its association with Nur77 is not clear at this point. Thus, p19 is a novel CDK inhibitor which may play a role in the cell cycle regulation of T cells.  相似文献   

17.
18.
Upadhyay D  Chang W  Wei K  Gao M  Rosen GD 《FEBS letters》2007,581(2):248-252
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) induces a potent G(1)/S-phase cell cycle arrest of epithelial cells by inhibiting the activities of cyclin D- and cyclin E-associated kinase complexes. Downregulation of the kinase activities is mediated by induction of cyclin dependent kinase (CDK) inhibitor p15(Ink4b) which blocks CDK4 and CDK6 kinases and leads to binding of p27(Kip1) to CDK2-cyclin E complex. Levels of several of these factors are controlled by the ubiquitin-proteasome pathway. We demonstrate here that proteasomal inhibitors release the cells from TGF-beta imposed G(1)-phase arrest and instigate the entry of the cells into S-phase. Proteasomal inhibitors are shown to specifically increase the activity of the cyclin D-kinase complex by increasing the levels of p27(Kip1) and cyclin D and by maintaining CDK4/6 protein levels leading to phosphorylation of the retinoblastoma protein without increasing cyclin E-associated kinase activity. The results indicate caution in the potential therapeutic use of the proteasome inhibitors due to unscheduled initiation of DNA replication in the presence of a physiological growth inhibitor.  相似文献   

20.
The distinct expression patterns of the two A-type cyclins during spermatogenesis and the absolute requirement for cyclin A1 in this biological process in vivo suggest that they may confer distinct biochemical properties to their CDK partners. We therefore compared human cyclin A1- and cyclin A2-containing CDK complexes in vitro by determining kinetic constants and by examining the complexes for their ability to phosphorylate pRb and p53. Differences in biochemical activity were observed in CDK2 but not CDK1 when complexed with cyclin A1 versus cyclin A2. Further, CDK1/cyclin A1 is a better kinase complex for phosphorylating potentially physiologically relevant substrates pRb and p53 than CDK2/cyclin A2. The activity of CDKs can therefore be regulated depending upon which A-type cyclin they bind and CDK1/cyclin A1 might be preferred in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号