首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
17β-Hydroxysteroid dehydrogenase/17-ketosteroid reductases (17HSD/KSR) play a key role in regulating steroid receptor occupancy in normal tissues and tumors. Although 17HSD/KSR activity has been detected in ovarian epithelial tumors, our understanding of which isoforms are present and their potential for steroid metabolism is limited. In this investigation, 17HSD/KSR activity from a series of ovarian epithelial tumors was assayed in cytosol and microsomes under conditions which differentiate between isoforms. Inhibition studies were used to further characterize the steroid specificities of isoforms in the two subcellular fractions. Activity varied widely between tumors of the same histopathologic classification. The highest levels of activity were observed in mucinous tumors. Michaelis constants, maximum velocities, estradiol-17β/testosterone (E2/T) activity ratios and inhibition patterns were consistent with a predominance of microsomal 17HSD/KSR2 and cytosolic 17HSD/KSR5, isoforms reactive with both E2 and T, with evidence of estrogenic 17HSD/KSR1 in cytosol from some samples. In tumors where activity and mRNA expression were both characterized, Northern blots, PCR and sequence analysis indicated 17HSD/KSR5 was the predominant isoform. The presence of 17HSD/KSR5, which also has both 3-HSD/KSR and 20HSD/KSR activity, and 17HSD/KSR2 which also has 20-HSD activity, could influence not only estrogen and androgen binding but progesterone receptor occupancy, as well, in receptor-containing tumors.  相似文献   

2.
Adipose tissue is an important site of steroid hormone biosynthesis, as type I 11β-hydroxysteroid dehydrogenase (HSD1), the enzyme responsible for the conversion of cortisone into cortisol and the P450 aromatase, the enzyme catalysing androgens aromatization into estrogens, are both expressed in human adipose tissue. In the present report, we have investigated the possibility that sex steroids and leptin could regulate these two enzymes in cultured preadipocytes from men and women intra-abdominal fat depots.

In women preadipocytes, human recombinant leptin down-regulates HSD1 mRNA expression (−58%) and P450 aromatase activity (−26%). Conversely, leptin up-regulates the HSD1 (2.4-fold) and the P450 aromatase (1.6-fold) mRNA expression in men preadipocytes. In women preadipocytes, 17β-estradiol strongly stimulates HSD1 mRNA expression (10-fold) and, in contrast, decreases by half the P450 aromatase expression. In men, 17β-estradiol has no influence on HSD1 expression but up-regulates P450 aromatase mRNA expression (2.4-fold). Finally, androgens increase by a factor of 2.5–5 the mRNA expression of both enzymes in men.

These findings suggest that sex steroids and leptin either increase or decrease local cortisol and estrogens productions in men or in women preadipocytes, respectively. They also indicate that steroid metabolism in adipose tissue is controlled by a coordinated regulation of P450 aromatase and HSD1 expressions. Finally, the important sex-specific differences described herein may also contribute to explain the sexual dimorphism of body fat distribution in humans.  相似文献   


3.
4.
A crtD (1-HO carotenoid 3,4-dehydrogenase gene) homolog from marine bacterium strain P99-3 included in the gene cluster for the biosynthesis of myxol (3,4-didehydro-1,2-dihydro-β,ψ-carotene-3,1,2-triol) was functionally identified. The P99-3 CrtD was phylogenetically distant from the other CrtDs. A catalytic feature was its high activity for the monocyclic carotenoid conversion: 1-HO-torulene (3,4-didehydro-1,2-dihydro-β,ψ-caroten-1-ol) was prominently formed from 1-HO-γ-carotene (1,2-dihydro-β,ψ-caroten-1-ol) in Escherichia coli with P99-3 CrtD, indicating that this enzyme has been highly adapted to myxol biosynthesis. This unique type of crtD is a valuable tool for obtaining 1-HO-3,4-didehydro monocyclic carotenoids in a heterologous carotenoid production system.  相似文献   

5.
Purified RNase Rs, from Rhizopus stolonifer, when covalently coupled to aminoethyl (AE) Bio-Gel P-2, via its carbohydrate moiety, retained 35–40% activity of the soluble enzyme. Optimization of coupling conditions showed that the most active immobilized preparations are obtained when 400 units of 100 μM periodate oxidized enzyme are allowed to react with 1 ml (packed volume) of AE-Bio-Gel P-2 at 6±1°C for 15 h. Immobilization did not change the pH and temperature optima of the enzyme but it increased the temperature stability. Immobilization did not bring about a change in the Km but resulted in a 2·5-fold decrease in the Vmax. Substrate concentrations as high as 25 mg of RNA could be converted to more than 80% 2′,3′ cyclic nucleotides in 14 h, at pH 5·5 and 37°C. On repeated use, the bound enzyme retained 70% of its initial activity after six cycles of use. The bound enzyme could be stored in wet state for 60 days without any significant loss in its initial activity.  相似文献   

6.
The hypogonadal (hpg) mouse, which lacks circulating gonadotrophins during development, has been used (a) to determine whether initial expression of steroidogenic enzyme activity is dependent upon gonadotrophins and (b) to examine the responsiveness of these enzymes to luteinizing hormone (LH) stimulation. Activities of 17-hydroxylase, 17-ketosteroid reductase and 5-reductase were very low but detectable in the hpg testis while cholesterol side-chain cleavage (CSCC) activity was undetectable. In contrast, 3β-hydroxysteroid dehydrogenase (3βHSD) activity was high (11% of normal testis). Treatment with LH increased CSCC and 17-hydroxylase activity more than 11-fold within 24 h. 5-Reductase activity was increased 3-fold after 3 days treatment while 17-ketosteroid reductase and 3βHSD activities did not respond until after 10 days of treatment. The overall increases in 5-reductase (4-fold) and 3βHSD (6-fold) activities were low while changes in 17-ketosteroid reductase (20-fold) and, particularly, CSCC (> 130-fold) and 17-hydroxylase (153-fold) were more marked. Results show (1) that expression of 3βHSD activity may be independent of gonadotrophins, (2) that activity of 17-hydroxylase, 17-ketosteroid reductase and 5-reductase is expressed, though at low levels, in the absence of gonadotrophins and (3) that prior exposure to gonadotrophins is not required for a rapid response to LH stimulation, particularly with respect to the cytochrome P-450 enzymes.  相似文献   

7.
8.
17β-Hydroxysteroid dehydrogenase type 1 (17HSD type 1) catalyzes the reduction of estrone (E1) to biologically more active estradiol (E2). In the present study, the effect of activin, inhibin, and follistatin on 17HSD activity and 17HSD type 1 expression in cultured, unluteinized rat granulosa cells was examined. Furthermore, the effects of these hormones on 17HSD type 1 expression were compared with the expression of P450 aromatase (P450arom). Rat granulosa cells were pre-incubated in serum-free media for 3 days, followed by a 2-day treatment with activin, inhibin, follistatin and 8-Br-cAMP. Activin in increasing concentrations appeared to effect a dose-dependent increase in 17HSD activity. In addition, increasing concentrations of activin also increased 17HSD type 1 mRNA expression. Addition of 8-Br-cAMP at concentrations of 0.25 and 1.5 mmol/l together with activin significantly augmented the stimulatory effects of activin alone in the cultured cells. Neither inhibin, nor follistatin, either alone or in combination with 8-Br-cAMP, had any notable effects on 17HSD activity and 17HSD type 1 expression. Preincubation of activin with increasing concentrations of follistatin significantly diminished the stimulatory effect of activin. In the presence of follistatin, activin did not significantly increase the 8-Br-cAMP-induced 17HSD activity and 17HSD type 1 expression. The culturing of granulosa cells in the presence or the absence of inhibin or follistatin with or without 8-Br-cAMP did not alter the effect of these peptides on P450arom expression in rat granulosa cells as judged by Northern blot analysis of total RNA. However, cAMP-induced P450arom expression was enhanced by activin treatment, except when follistatin was present. This is in line with the suggested role of follistatin as an activin-binding protein, which limits the bioavailability of activin to its membrane receptors. Thus, the results support the notion of a paracrine/autocrine role of activin in follicular steroidogenesis of growing follicles.  相似文献   

9.
The localization of mycobacterial 17β-hydroxysteroid dehydrogenase (17β-OH SDH) was studied using cell fractionation and cytochemical investigation. Mycobacterium sp. Et1 mutant strain derived from Mycobacterium sp. VKM Ac-1815D and characterized by increased 17β-OH SDH activity was used as a model organism.

Subcellular distribution study showed both soluble and membrane-bound forms of mycobacterial 17β-hydroxysteroid dehydrogenase. The cytochemical method based on a copper ferrocyanide procedure followed by electron microscopic visualization was applied in order to investigate the intracellular localization of bacterial 17β-OH SDH in more detail. The enzyme was found to be located in the peripheral cytoplasmic zone adjoining the cytoplasmic membrane (CM). 17β-OH SDH was loosely membrane bound and easily released into the environment under the cell integrity failure.  相似文献   


10.
11.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC50 values in the low micromolar range.  相似文献   

12.
13.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

14.
Two isoforms of 11β-HSD exist; 11β-HSD1 is bi-directional (the reductase usually being predominant) and 11β-HSD2 functions as a dehydrogenase, conferring kidney mineralocorticoid specificity. We have previously described endogenous substances in human urine, “glycyrrhetinic acid-like factors (GALFs)”, which like licorice, inhibit the bi-directional 11β-HSD1 enzyme as well as the dehydrogenase reaction of 11β-HSD2.

Many of the more potent GALFs are derived from two major families of adrenal steroids, corticosterone and cortisol. For example, 35-tetrahydro-corticosterone, its derivative, 35-tetrahydro-11β-hydroxy-progesterone (produced by 21-deoxygenation of corticosterone in intestinal flora); 35-tetrahydro-11β-hydroxy-testosterone (produced by side chain cleavage of cortisol); are potent inhibitors of 11β-HSD1 and 11β-HSD2-dehydrogenase, with IC50's in range 0.26–3.0 μM, whereas their 11-keto-35-tetrahydro-derivatives inhibit 11β-HSD1 reductase, with IC50's in range 0.7–0.8 μM (their 35β-derivatives being completely inactive).

Inhibitors of 11β-HSD2 increase local cortisol levels, permitting it to act as a mineralocorticoid in kidney. Inhibitors of 11β-HSD1 dehydrogenase/11β-HSD1 reductase serve to adjust the set point of local deactivation/reactivation of cortisol in vascular and other glucocorticoid target tissues, including adipose, vascular, adrenal tissue, and the eye. These adrenally derived 11-oxygenated C21- and C19-steroidal substances may serve as 11β-HSD1- or 11β-HSD2-GALFs. We conclude that adrenally derived products are likely regulators of local cortisol bioactivity in humans.  相似文献   


15.
Androgen production in the testis is carried out by the Leydig cells, which convert cholesterol into androgens. Previously, isoflavones have been shown to affect serum androgen levels and steroidogenic enzyme activities. In this study, the effects of lifelong exposure to dietary soy isoflavones on testicular microsomal steroidogenic enzyme activities were examined in the rat. F1 male rats were obtained from a multi-generational study where the parental generation was fed diets containing alcohol-washed soy protein supplemented with increasing amounts of Novasoy, a commercially available isoflavone supplement. A control group was maintained on a soy-free casein protein-based diet (AIN93G). The diets were designed to approximate human consumption levels and ranged from 0 to 1046.6 mg isoflavones/kg pelleted feed, encompassing exposures representative of North American and Asian diets as well as infant fed soy-based formula. Activities of testicular 3β-hydroxysteroid dehydrogenase (3β-HSD), P450c17 (CYP17), 17β-hydroxysteroid dehydrogenase (17β-HSD) were assayed on post natal day (PND) 28, 70, 120, 240 and 360 while 5-reducatase was assayed on PND 28. At PND 28, 3β-HSD activity was elevated by approximately 50% in rats receiving 1046.6 mg total isoflavones/kg feed compared to those on the casein only diet. A similar increase in activity was observed for CYP17 in rats receiving 235.6 mg total isoflavones/kg feed, a level representative of infant exposure through formula, compared to those receiving 0 mg isoflavones from the casein diet. These results demonstrate that rats fed a mixture of dietary soy isoflavones showed significantly altered enzyme activity profiles during development at PND 28 as a result of early exposure to isoflavones at levels obtainable by humans.  相似文献   

16.
A series of N-terminus benzamides of glycine-based symmetric peptides, linked to m-xylylenediamine and 3,4′-oxydianiline spacers, were prepared and tested as inhibitors of β-amyloid peptide Aβ1–40 aggregation in vitro. Compounds with good anti-aggregating activity were detected. Polyphenolic amides showed the highest anti-aggregating activity, with IC50 values in the micromolar range. Structure–activity relationships suggested that π–π stacking and hydrogen-bonding interactions play a key role in the inhibition of Aβ1–40 self-assembly leading to amyloid fibrils.  相似文献   

17.
Two new triterpene ketols were isolated from the whole herb of Euphorbia supina; one of these compounds, named supinenolone E, was confirmed to be 3β-hydroxy-D:C-friedo-B′: A′-neogammacer-8-en-7-one(3β-hydroxyfern-8-en-7-one) and the another to be 3β-hydroxy-D:C-friedo-olean-8-en-7-one (3β-hydroxymultuiflor-8-en-7-one) on the basis of chemical and spectral evidence.  相似文献   

18.
Yuan Zhuang  Alan M. Weiner 《Gene》1990,90(2):263-269
We have previously used site-directed mutagenesis to introduce an additional branch site into the first intron of the human β-globin gene at nt −24 between the natural branch site (nt−37) and the normal 3′ splice site (nt−1). We found that either the upstream or downstream branch site could be used during in vitro splicing, depending on which site best matched the mammalian branch site consensus YURAC (R = purine; Y = pyrimidine). Here we show that introduction of an additional AG dinucleotide at nt −20 between the downstream branch site and the normal 3′ splice site results in alternative 3′ splicing. Splicing to the new AG uses the upstream branch site exclusively, presumably because the downstream branch site is only 4 nt from this 3′ splice site. We were surprised, however, to find that the presence of the new AG also prevents the use of the upstream branch site for splicing to the normal 3′ splice site. Analysis of additional mutants confirmed earlier work [Krainer et al.: Mechanisms of human β-globin pre-mRNA splicing. In Berg, P. (Ed.), The Robert A. Welch Foundation Conferences on Chemical Research XXIX. Genetic Chemistry: The Molecular Basis of Heredity. Welch Foundation, Houston, TX, 1985, pp. 353–382] that the new AG cannot function by itself as a complete 3′ splice site; rather, it appears that alternative 3′ splicing initiates at the normal 3′ splices site but then searches, once the reaction is underway, for the first AG downstream from the chosen branch site. Taken together, our data suggest that the conserved AG dinucleotide at the 3′ splice site may be recognized twice during mammalian mRNA splicing in vitro.  相似文献   

19.
Gantulga D  Turan Y  Bevan DR  Esen A 《Phytochemistry》2008,69(8):1661-1670
The Arabidopsis genes At1g45130 and At3g52840 encode the β-galactosidase isozymes Gal-5 and Gal-2 that belong to Glycosyl Hydrolase Family 35 (GH 35). The two enzymes share 60% sequence identity with each other and 38–81% with other plant β-galactosidases that are reported to be involved in cell wall modification. We studied organ-specific expression of the two isozymes. According to our western blot analysis using peptide-specific antibodies, Gal-5 and Gal-2 are most highly expressed in stem and rosette leaves. We show by dot-immunoblotting that Gal-5 and Gal-2 are associated with the cell wall in Arabidopsis. We also report expression of the recombinant enzymes in P. pastoris and describe their substrate specificities. Both enzymes hydrolyze the synthetic substrate para-nitrophenyl-β-d-galactopyranoside and display optimal enzyme activity between pH 4.0 and 4.5, similar to the pH optimum reported for other well-characterized plant β-galactosidases. Both Gal-5 and Gal-2 show a broad specificity for the aglycone moiety and a strict specificity for the glycone moiety in that they prefer galactose and its 6-deoxy analogue, fucose. Both enzymes cleave β-(1, 4) and β-(1, 3) linkages in galacto-oligosaccharides and hydrolyze the pectic fraction of Arabidopsis cell wall. These findings suggest that Gal-5 and Gal-2 could be involved in the modification of cell wall polysaccharides.  相似文献   

20.
3-Aryl-5-phenyl-(1,2,4)-triazoles were identified as selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). They are active in both in vitro and an in vivo mouse pharmacodynamic (PD) model. The synthesis and structure activity relationships are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号