首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hornum, Mette, Dan M. Cooper, Jo Anne Brasel, Alina Bueno,and Kathy E. Sietsema. Exercise-induced changes in circulating growth factors and cyclic variation in plasma estradiol in women. J. Appl. Physiol. 82(6):1946-1951, 1997.The effect of 10 min of high-intensity cyclingexercise on circulating growth hormone (GH), insulin-like growthfactors I and II (IGF-I and -II), and insulin-like growth factorbinding protein 3 (IGF BP-3) was studied in nine eumenorrheic women(age 19-48 yr) at two different phases of the menstrual cycle.Tests were performed on separate mornings corresponding to thefollicular phase and to the periovulatory phase of the menstrual cycle,during which plasma levels of endogenous estradiol(E2) were relatively low (272 ± 59 pmol/l) and high (1,112 ± 407 pmol/l), respectively. GHincreased significantly in response to exercise under bothE2 conditions. Plasma GH before exercise (2.73 ± 2.48 vs. 1.71 ± 2.09 µg/l) and total GH over 10 min of exercise and 1-h recovery (324 ± 199 vs. 197 ± 163 ng) were both significantly greater for periovulatory phase than for follicular phase studies. IGF-I, but not IGF-II, increased acutely after exercise. IGF BP-3, assayed by radioimmunoassay, was not significantly different at preexercise, end exercise, or at 30-min recovery time points and was not different between the two study days.When assayed by Western blot, however, there was a significant increasein IGF BP-3 30 min after exercise for the periovulatory study. Thesefindings indicate that the modulation of GH secretion associated withmenstrual cycle variations in circulatingE2 affects GH measured afterexercise, at least in part, by an increase in baseline levels. Theacute increase in IGF-I induced by exercise appears to be independentof the GH response and is not affected by menstrual cycle timing.

  相似文献   

2.
Castellani, John W., Carl M. Maresh, Lawrence E. Armstrong,Robert W. Kenefick, Deborah Riebe, Marcos Echegaray, Douglas Casa, andV. Daniel Castracane. Intravenous vs. oral rehydration: effects onsubsequent exercise-heat stress. J. Appl.Physiol. 82(3): 799-806, 1997.This studycompared the influence of intravenous vs. oral rehydration afterexercise-induced dehydration during a subsequent 90-min exercisebout. It was hypothesized that cardiovascular, thermoregulatory, and hormonal variables would be the same between intravenous and oral rehydration because of similar restoration ofplasma volume (PV) and osmolality (Osmo). Eight non-heat-acclimated menreceived three experimental treatments (counterbalanced design) immediately after exercise-induced dehydration (33°C) to 4%body weight loss. Treatments were intravenous 0.45% NaCl (iv; 25 ml/kg), no fluid (NF), and oral saline (Oral; 25 ml/kg).After rehydration and rest (2 h total), subjects walked at 50% maximalO2 consumption for up to 90 min at36°C. The following observations were made: 1) heart rate was higher(P < 0.05) in Oral vs. ivat minutes 45, 60, and75 of exercise;2) rectal temperature, sweat rate, percent change in PV, and change in plasma Osmo were similar between ivand Oral; 3) change in plasmanorepinephrine decreased less (P < 0.05) in Oral compared with iv at minute45; 4) changes in plasma adrenocorticotropic hormone and cortisol were similar between ivand Oral after exercise was initiated; and5) exercise time was similar betweeniv (77.4 ± 5.4 min) and Oral (84.2 ± 2.3 min). These datasuggest that after exercise-induced dehydration, iv and Oral wereequally effective as rehydration treatments. Thermoregulation, changein adrenocorticotropic hormone, and change in cortisol were notdifferent between iv and Oral after exercise began; this is likely dueto similar percent change in PV and change in Osmo.

  相似文献   

3.
MacDonald, Maureen, Preben K. Pedersen, and Richard L. Hughson. Acceleration ofO2 kinetics in heavysubmaximal exercise by hyperoxia and prior high-intensity exercise.J. Appl. Physiol. 83(4):1318-1325, 1997.We examined the hypothesis thatO2 uptake (O2) wouldchange more rapidly at the onset of step work rate transitions inexercise with hyperoxic gas breathing and after prior high-intensityexercise. The kinetics ofO2 were determined from themean response time (MRT; time to 63% of total change inO2) andcalculations of O2 deficit andslow component during normoxic and hyperoxic gas breathing in one groupof seven subjects during exercise below and above ventilatory threshold(VT) and in another group of seven subjects during exercise above VTwith and without prior high-intensity exercise. In exercise transitions below VT, hyperoxic gas breathing did not affect the kinetic response of O2 at theonset or end of exercise. At work rates above VT, hyperoxic gasbreathing accelerated both the on- and off-transient MRT, reduced theO2 deficit, and decreased theO2 slow component fromminute 3 to minute6 of exercise, compared with normoxia. Prior exerciseabove VT accelerated the on-transient MRT and reduced theO2 slow component fromminute 3 to minute6 of exercise in a second bout of exercise with bothnormoxic and hyperoxic gas breathing. However, the summatedO2 deficit in the second normoxicand hyperoxic steps was not different from that of the first steps inthe same gas condition. Faster on-transient responses in exerciseabove, but not below, VT with hyperoxia and, to a lesser degree, afterprior high-intensity exercise above VT support the theory of anO2 transport limitation at theonset of exercise for workloads >VT.

  相似文献   

4.
We comparedreflex responses to static handgrip at 30% maximal voluntarycontraction (MVC) in 10 women (mean age 24.1 ± 1.7 yr) during twophases of their ovarian cycle: the menstrual phase (days 1-4) and the follicularphase (days10-12). Changes in muscle sympathetic nerve activity (MSNA; microneurography) in response tostatic exercise were greater during the menstrual compared withfollicular phase (phase effect P = 0.01). Levels of estrogen were less during the menstrual phase(75 ± 5.5 vs. 116 ± 9.6 pg/ml, days 1-4 vs.days 10-12;P = 0.002). Generated tension did not explain differences in MSNA responses (MVC: 29.3 ± 1.3 vs. 28.2 ± 1.5 kg, days 1-4 vs.days 10-12;P = 0.13). In a group of experiments with the use of 31P-NMRspectroscopy, no phase effect was observed forH+ andH2PO4 concentrations(n = 5). During an ischemicrhythmic handgrip paradigm (20% MVC), a phase effect was notobserved for MSNA or H+ orH2PO4 concentrations,suggesting that blood flow was necessary for the expression of thecycle-related effect. The present studies suggest that, during statichandgrip exercise, MSNA is increased during the menstrual compared withthe follicular phase of the ovarian cycle.

  相似文献   

5.
Brooks, E. M., A. L. Morgan, J. M. Pierzga, S. L. Wladkowski, J. T. O'Gorman, J. A. Derr, and W. L. Kenney. Chronic hormone replacement therapy alters thermoregulatory and vasomotor function in postmenopausal women. J. Appl.Physiol. 83(2): 477-484, 1997.This investigationexamined effects of chronic (2 yr) hormone replacement therapy (HRT),both estrogen replacement therapy (ERT) and estrogen plus progesteronetherapy (E+P), on core temperature and skin blood flow responses ofpostmenopausal women. Twenty-five postmenopausal women [9 not onHRT (NO), 8 on ERT, 8 on E+P] exercised on a cycle ergometer for1 h at an ambient temperature of 36°C. Cutaneous vascularconductance (CVC) was monitored by laser-Doppler flowmetry, and forearmvascular conductance (FVC) was measured by using venous occlusionplethysmography. Iontophoresis of bretylium tosylate was performedbefore exercise to block local vasoconstrictor (VC) activity at oneskin site on the forearm. Rectal temperature (Tre) was ~0.5°C lower forthe ERT group (P < 0.01) comparedwith E+P and NO groups at rest and throughout exercise. FVC: mean body temperature (Tb) and CVC:Tb curves were shifted~0.5°C leftward for the ERT group(P < 0.0001). Baseline CVC wassignificantly higher in the ERT group(P < 0.05), but there was nointeraction between bretylium treatment and groups once exercise wasinitiated. These results suggest that1) chronic ERT likely acts centrally to decrease Tre,2) ERT lowers theTre at which heat-loss effector mechanisms are initiated, primarily by actions on active cutaneous vasodilation, and 3) addition ofexogenous progestins in HRT effectively blocks these effects.

  相似文献   

6.
We wished to determine whether the increased ACTH duringprolonged exercise was associated with changes in peripheralcorticotropin-releasing hormone (CRH) and/or argininevasopressin (AVP). Six male triathletes were studied during exercise: 1 h at 70% maximal oxygen consumption, followed by progressivelyincreasing work rates until exhaustion. Data obtained during theexercise session were compared with a nonexercise control session.Venous blood was sampled over a 2-h period for cortisol, ACTH, CRH,AVP, renin, glucose, and plasma osmolality. There were significantincreases by ANOVA on log-transformed data in plasma cortisol(P = 0.002), ACTH(P < 0.001), CRH(P < 0.001), and AVP(P < 0.03) during exercise comparedwith the control day. A variable increase in AVP was observed after the period of high-intensity exercise. Plasma osmolality rose with exercise(P < 0.001) and was related toplasma AVP during submaximal exercise(P < 0.03) but not with theinclusion of data that followed the high-intensity exercise. Thisindicated an additional stimulus to the secretion of AVP. The mechanismby which ACTH secretion occurs during exercise involves both CRH andAVP. We hypothesize that high-intensity exercise favors AVP release andthat prolonged duration favors CRH release.

  相似文献   

7.
Kraemer, R. R., L. G. Johnson, R. Haltom, G. R. Kraemer, H. Gaines, M. Drapcho, T. Gimple, and V. Daniel Castracane. Effects of hormone replacement on growth hormone and prolactin exercise responses in postmenopausal women. J. Appl.Physiol. 84(2): 703-708, 1998.Exercise elevatesgrowth hormone (GH) and prolactin (PRL) blood concentrations inpremenopausal women. Postmenopausal women taking hormone replacementtherapy (HRT) maintain higher estrogen levels that could affect GH andPRL. The purpose of the study was to determine the effects of HRT on GHand PRL responses to treadmill exercise. Seventeen healthy women whowere postmenopausal (naturally or surgically) [8 on HRT; 9 not onHRT (NHRT)], completed 30 min of treadmill exercise at 79.16 ± 1.2% maximal O2 consumption (HRT group) and 80.19 ± 0.91% maximalO2 consumption (NHRT group). Bloodsamples were collected from an intravenous catheter during an exercisesession and during a control session without exercise. GH and PRLconcentrations were significantly higher in the exercise trial than inthe nonexercise trial, whereas resting concentrations were similar forboth trials. GH and PRL peaked at 10.8 ± 1.60 and 12.67 ± 2.58 ng/ml, respectively, for HRT subjects and at 4.90 ± 1.18 and 9.04 ± 2.17 ng/ml, respectively, for NHRT subjects. GH concentrations inthe exercise trial were significantly higher for HRT than for NHRTsubjects. This is the first study to demonstrate that HRT enhancestreadmill-exercise-induced GH release and that similar PRL responses totreadmill exercise occur in postmenopausal women regardless of HRTstatus.

  相似文献   

8.
Fothergill, D. M., and N. A. Carlson. Effects ofN2O narcosis on breathing andeffort sensations during exercise and inspiratory resistive loading.J. Appl. Physiol. 81(4):1562-1571, 1996.The influence of nitrous oxide(N2O) narcosis on the responses toexercise and inspiratory resistive loading was studied in thirteen maleUS Navy divers. Each diver performed an incremental bicycle exercisetest at 1 ATA to volitional exhaustion while breathing a 23%N2O gas mixture and a nonnarcoticgas of the same PO2, density, andviscosity. The same gas mixtures were used during four subsequent30-min steady-state submaximal exercise trials in which the subjectsbreathed the mixtures both with and without an inspiratory resistance(5.5 vs. 1.1 cmH2O · s · l1at 1 l/s). Throughout each test, subjective ratings of respiratory effort (RE), leg exertion, and narcosis were obtained with acategory-ratio scale. The level of narcosis was rated between slightand moderate for the N2O mixturebut showed great individual variation. Perceived leg exertion and thetime to exhaustion were not significantly different with the twobreathing mixtures. Heart rate was unaffected by the gas mixture andinspiratory resistance at rest and during steady-state exercise but wassignificantly lower with the N2O mixture during incremental exercise (P < 0.05). Despite significant increases in inspiratory occlusionpressure (13%; P < 0.05),esophageal pressure (12%; P < 0.001), expired minute ventilation (4%;P < 0.01), and the work rate ofbreathing (15%; P < 0.001) when the subjects breathed the N2O mixture,RE during both steady-state and incremental exercise was 25% lowerwith the narcotic gas than with the nonnarcotic mixture(P < 0.05). We conclude that the narcotic-mediated changes in ventilation, heart rate, and RE induced by23% N2O are not of sufficientmagnitude to influence exercise tolerance at surface pressure.Furthermore, the load-compensating respiratory reflexes responsible formaintaining ventilation during resistive breathing are not depressed byN2O narcosis.

  相似文献   

9.
Turley, Kenneth R., and Jack H. Wilmore. Cardiovascularresponses to treadmill and cycle ergometer exercise in children andadults. J. Appl. Physiol. 83(3):948-957, 1997.This study was conducted to determine whethersubmaximal cardiovascular responses at a given rate of work aredifferent in children and adults, and, if different, what mechanismsare involved and whether the differences are exercise-modalitydependent. A total of 24 children, 7 to 9 yr old, and 24 adults, 18 to26 yr old (12 males and 12 females in each group), participated in bothsubmaximal and maximal exercise tests on both the treadmill and cycleergometer. With the use of regression analysis, it was determined thatcardiac output () was significantly lower(P  0.05) at a givenO2 consumption level(O2, l/min) in boys vs. menand in girls vs. women on both the treadmill and cycle ergometer. Thelower in the children was compensated for by asignificantly higher (P  0.05)arterial-mixed venous O2difference to achieve the same or similarO2. Furthermore, heart rateand total peripheral resistance were higher and stroke volume was lowerin the children vs. in the adult groups on both exercise modalities.Stroke volume at a given rate of work was closely related to leftventricular mass, with correlation coefficients ranging fromr = 0.89-0.92 andr = 0.88-0.93 in the males and females, respectively. It was concluded that submaximal cardiovascular responses are different in children and adults and that these differences are related to smaller hearts and a smaller absolute amountof muscle doing a given rate of work in the children. The differenceswere not exercise-modality dependent.

  相似文献   

10.
Charkoudian, Nisha, and John M. Johnson. Modificationof active cutaneous vasodilation by oral contraceptive hormones. J. Appl. Physiol. 83(6):2012-2018, 1997.It is not clear whether the alteredthermoregulatory reflex control of the cutaneous circulation seen amongphases of the menstrual cycle also occurs with the synthetic estrogenand progesterone in oral contraceptive pills and whether any suchmodifications include altered control of the cutaneous activevasodilator system. To address these questions, we conducted controlledwhole body heating experiments in seven women at the end of the thirdweek of hormone pills (HH) and at the end of the week of placebo/nopills (LH). A water-perfused suit was used to control body temperature.Laser Doppler flowmetry was used to monitor cutaneous blood flow at acontrol site and at a site at which noradrenergic vasoconstrictorcontrol had been eliminated by iontophoresis of bretylium (BT),isolating the active cutaneous vasodilator system. The oral temperature(Tor) thresholds for cutaneousvasodilation were higher in HH at both control [37.09 ± 0.12 vs. 36.83 ± 0.07°C (LH), P < 0.01] and BT-treated [37.19 ± 0.05 vs. 36.88 ± 0.12°C (LH), P < 0.01]sites. The Tor threshold forsweating was similarly shifted (HH: 37.15 ± 0.11°C vs. LH: 36.94 ± 0.11°C, P < 0.01). Arightward shift in the relationship of heart rate toTor was seen in HH. Thesensitivities (slopes of the responses vs.Tor) did not differstatistically between phases. The similar threshold shifts at controland BT-treated sites suggest that the hormones shift the function ofthe active vasodilator system to higher internal temperatures. Thesimilarity of the shifts among thermoregulatory effectors suggests acentrally mediated action of these hormones.

  相似文献   

11.
Nishiyasu, Takeshi, Nobusuke Tan, Keiko Morimoto, RyokoSone, and Naotoshi Murakami. Cardiovascular and humoral responses to sustained muscle metaboreflex activation in humans.J. Appl. Physiol. 84(1): 116-122, 1998.The cardiovascular and humoral responses to sustained musclemetaboreflex activation were examined in eight male volunteers whilethey performed two 24-min exercise protocols. Each of these consistedof six 1-min bouts of isometric handgrip exercise (the left and righthands being used alternately) at 50% of maximal voluntary contraction;after each bout, there was either 3-min postexercise occlusion(occlusion protocol) or 3-min rest (control protocol). In the occlusionprotocol, mean arterial blood pressure was ~25 mmHg higher thanduring the control protocol, indicating that the muscle metaboreflexwas activated during occlusion. During the control protocol, plasmarenin activity, plasma vasopressin, and adrenocorticotropic hormonevalues were not significantly different from the values at rest. Duringthe occlusion protocol, however, plasma renin activity, plasmavasopressin, and adrenocorticotropic hormone were all significantlyincreased at 25 min. These data demonstrate that, in humans, thesustained activation of the muscle metaboreflex causes the secretion of several hormones originating from different regions.

  相似文献   

12.
Favier, Roland, Esperanza Caceres, Laurent Guillon, BrigitteSempore, Michel Sauvain, Harry Koubi, and Hilde Spielvogel. Cocachewing for exercise: hormonal and metabolic responses of nonhabitualchewers. J. Appl. Physiol. 81(5):1901-1907, 1996.To determine the effects of acute coca use onthe hormonal and metabolic responses to exercise, 12 healthynonhabitual coca users were submitted twice to steady-state exercise(~75% maximal O2 uptake). Onone occasion, they were asked to chew 15 g of coca leaves 1 h beforeexercise, whereas on the other occasion, exercise was performed after 1 h of chewing a sugar-free chewing gum. Plasma epinephrine,norepinephrine, insulin, glucagon, and metabolites (glucose, lactate,glycerol, and free fatty acids) were determined at rest before andafter coca chewing and during the 5th, 15th, 30th, and 60th min ofexercise. Simultaneously to these determinations, cardiorespiratoryvariables (heart rate, mean arterial blood pressure, oxygen uptake, andrespiratory gas exchange ratio) were also measured. At rest, cocachewing had no effect on plasma hormonal and metabolic levels exceptfor a significantly reduced insulin concentration. During exercise, theoxygen uptake, heart rate, and respiratory gas exchange ratio weresignificantly increased in the coca-chewing trial compared with thecontrol (gum-chewing) test. The exercise-induced drop in plasma glucoseand insulin was prevented by prior coca chewing. These results contrastwith previous data obtained in chronic coca users who display duringprolonged submaximal exercise an exaggerated plasma sympatheticresponse, an enhanced availability and utilization of fat (R. Favier,E. Caceres, H. Koubi, B. Sempore, M. Sauvain, and H. Spielvogel.J. Appl. Physiol. 80: 650-655, 1996). We conclude that, whereas coca chewing might affect glucose homeostasis during exercise, none of the physiological data provided bythis study would suggest that acute coca chewing in nonhabitual userscould enhance tolerance to exercise.

  相似文献   

13.
Trabelsi, Fethi, and Jean-Marc Lavoie. Arginine-inducedpancreatic hormone secretion during exercise in rats.J. Appl. Physiol. 81(6):2528-2533, 1996.The aim of the present investigation was to1) determine whetherarginine-induced pancreatic hormone secretion can be modified during anexercise bout, and 2) verify whetherthe sectioning of the hepatic branch of the vagus nerve can alter thearginine-induced insulin and glucagon secretion during exercise inrats. To this end, we studied the effects of an intraperitonealinjection of arginine (1 g/kg body mass) during an exercise bout (30 min, 26 m/min, 0% grade) on the pancreatic hormone responses. Theseeffects were determined in one group of sham-operated exercising ratsand compared with three control groups: one group of resting rats, onegroup of saline-injected exercising rats, and one group ofhepatic-vagotomized exercising rats. Five minutes after the injectionof arginine, significant (P < 0.05)increases in insulin, glucagon, and C-peptide concentrations wereobserved in exercising as well as in resting rats. These responses werenot, however, altered by the hepatic vagotomy and/or by theexercise bout. It is concluded that arginine is a potent stimulus ofpancreatic hormone secretion during exercise, even though thesympathoadrenal system is activated. These results also indicate that ahepatic vagotomy does not seem to influence arginine-inducedhormonal pancreatic responses and question the role of the putativehepatic arginoreceptors in the control of the pancreatic hormonesecretion during exercise.

  相似文献   

14.
Effect of heat stress on glucose kinetics during exercise   总被引:2,自引:0,他引:2  
Hargreaves, Mark, Damien Angus, Kirsten Howlett, Nelly MarmyConus, and Mark Febbraio. Effect of heat stress on glucose kinetics during exercise. J. Appl.Physiol. 81(4): 1594-1597, 1996.To identify themechanism underlying the exaggerated hyperglycemia during exercise inthe heat, six trained men were studied during 40 min of cyclingexercise at a workload requiring 65% peak pulmonary oxygen uptake(O2 peak) on twooccasions at least 1 wk apart. On one occasion, the ambient temperaturewas 20°C [control (Con)], whereas on the other, it was40°C [high temperature (HT)]. Rates ofglucose appearance and disappearance were measured by using a primedcontinuous infusion of[6,6-2H]glucose. Nodifferences in oxygen uptake during exercise were observed betweentrials. After 40 min of exercise, heart rate, rectal temperature,respiratory exchange ratio, and plasma lactate were all higher in HTcompared with Con (P < 0.05). Plasmaglucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT,4.81 ± 0.19 mmol/l) but increased to a greater extent duringexercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of ahigher glucose rate of appearance in HT during the last 30 min ofexercise. In contrast, the glucose rate of disappearance and metabolicclearance rate were not different at any time point during exercise.Plasma catecholamines were higher after 10 and 40 min of exercise in HTcompared with Con (P < 0.05),whereas plasma glucagon, cortisol, and growth hormone were higher in HTafter 40 min. These results indicate that the hyperglycemia observedduring exercise in the heat is caused by an increase in liver glucoseoutput without any change in whole body glucoseutilization.

  相似文献   

15.
Lang, Chim C., Don B. Chomsky, Javed Butler, Shiv Kapoor,and John R. Wilson. Prostaglandin production contributes toexercise-induced vasodilation in heart failure. J. Appl. Physiol. 83(6): 1933-1940, 1997.Endothelial release of prostaglandins may contribute toexercise-induced skeletal muscle arteriolar vasodilation in patientswith heart failure. To test this hypothesis, we examined the effect ofindomethacin on leg circulation and metabolism in eight chronic heartfailure patients, aged 55 ± 4 yr. Central hemodynamics and legblood flow, determined by thermodilution, and leg metabolic parameterswere measured during maximum treadmill exercise before and 2 h afteroral administration of indomethacin (75 mg). Leg release of6-ketoprostaglandin F1 was alsomeasured. During control exercise, leg blood flow increased from 0.34 ± 0.03 to 1.99 ± 0.19 l/min(P < 0.001), legO2 consumption from 13.6 ± 1.8 to 164.5 ± 16.2 ml/min (P < 0.001), and leg prostanoid release from 54.1 ± 8.5 to267.4 ± 35.8 pg/min (P < 0.001).Indomethacin suppressed release of prostaglandinF1(P < 0.001) throughout exercise anddecreased leg blood flow during exercise(P < 0.05). This was associated witha corresponding decrease in leg O2 consumption (P < 0.05) and a higher level offemoral venous lactate at peak exercise(P < 0.01). These data suggest thatrelease of vasodilatory prostaglandins contributes to skeletal musclearteriolar vasodilation in patients with heart failure.

  相似文献   

16.
Kolka, Margaret A., and Lou A. Stephenson. Effect ofluteal phase elevation in core temperature on forearm blood flow duringexercise. J. Appl. Physiol. 82(4):1079-1083, 1997.Forearm blood flow (FBF) as an index of skinblood flow in the forearm was measured in five healthy women by venousocclusion plethysmography during leg exercise at 80% peak aerobicpower and ambient temperature of 35°C (relative humidity 22%;dew-point temperature 10°C). Resting esophagealtemperature (Tes) was 0.3 ± 0.1°C higher in the midluteal than in the early follicular phase ofthe menstrual cycle (P < 0.05).Resting FBF was not different between menstrual cycle phases. TheTes threshold for onset of skinvasodilation was higher (37.4 ± 0.2°C) in midluteal than inearly follicular phase (37.0 ± 0.1°C; P < 0.05). The slope of the FBF toTes relationship was not different between menstrual cycle phases (14.0 ± 4.2 ml · 100 ml1 · min1 · °C1for early follicular and 16.3 ± 3.2 ml · 100 ml1 · min1 · °C1for midluteal phase). Plateau FBF was higher during exercise inmidluteal (14.6 ± 2.2 ml · 100 ml1 · min1 · °C1)compared with early follicular phase (10.9 ± 2.4 ml · 100 ml1 · min1 · °C1;P < 0.05). The attenuation of theincrease in FBF to Tes occurred when Tes was 0.6°C higher andat higher FBF in midluteal than in early follicular experiments(P < 0.05). In summary, the FBF response is different during exercise in the two menstrual cycle phasesstudied. After the attenuation of the increase in FBF and whileTes was still increasing, thegreater FBF in the midluteal phase may have been due to the effects ofincreased endogenous reproductive endocrines on the cutaneousvasculature.

  相似文献   

17.
Lee, Dae T., Michael M. Toner, William D. McArdle, IoannisS. Vrabas, and Kent B. Pandolf. Thermal and metabolic responses tocold-water immersion at knee, hip, and shoulder levels.J. Appl. Physiol. 82(5):1523-1530, 1997.To examine the effect of cold-water immersion atdifferent depths on thermal and metabolic responses, eight men (25 yrold, 16% body fat) attempted 12 tests: immersed to the knee (K), hip(H), and shoulder (Sh) in 15 and 25°C water during both rest (R) orleg cycling [35% peak oxygen uptake; (E)] for up to 135 min. At 15°C, rectal (Tre)and esophageal temperatures(Tes) between R and E were notdifferent in Sh and H groups (P > 0.05), whereas both in K group were higher during E than R(P < 0.05). At 25°C,Tre was higher(P < 0.05) during E than R at alldepths, whereas Tes during E washigher than during R in H and K groups.Tre remained at control levels inK-E at 15°C, K-E at 25°C, and in H-E groups at 25°C,whereas Tes remained unchanged inK-E at 15°C, in K-R at 15°C, and in all 25°C conditions (P > 0.05). During R and E, themagnitude of Tre change wasgreater (P < 0.05) than themagnitude of Tes change in Sh andH groups, whereas it was not different in the K group(P > 0.05). Total heat flow wasprogressive with water depth. During R at 15 and 25°C, heatproduction was not increased in K and H groups from control level(P > 0.05) but it did increase in Shgroup (P < 0.05). The increase inheat production during E compared with R was smaller(P < 0.05) in Sh (121 ± 7 W/m2 at 15°C and 97 ± 6 W/m2 at 25°C) than in H (156 ± 6 and 126 ± 5 W/m2,respectively) and K groups (155 ± 4 and 165 ± 6 W/m2, respectively). These datasuggest that Tre andTes respond differently duringpartial cold-water immersion. In addition, water levels above knee in15°C and above hip in 25°C cause depression of internal temperatures mainly due to insufficient heat production offsetting heatloss even during light exercise.

  相似文献   

18.
Edwards, N., I. Wilcox, O. J. Polo, and C. E. Sullivan.Hypercapnic blood pressure response is greater during the luteal phase of the menstrual cycle. J. Appl.Physiol. 81(5): 2142-2146, 1996.We investigatedthe cardiovascular responses to acute hypercapnia during the menstrualcycle. Eleven female subjects with regular menstrual cycles performedhypercapnic rebreathing tests during the follicular and luteal phasesof their menstrual cycles. Ventilatory and cardiovascular variableswere recorded breath by breath. Serum progesterone and estradiol weremeasured on each occasion. Serum progesterone was higher during theluteal [50.4 ± 9.6 (SE) nmol/l] than during thefollicular phase (2.1 ± 0.7 nmol/l;P < 0.001), but serum estradiol didnot differ (follicular phase, 324 ± 101 pmol/l; luteal phase, 162 ± 71 pmol/l; P = 0.61). Thesystolic blood pressure responses during hypercapnia were 2.0 ± 0.3 and 4.0 ± 0.5 mmHg/Torr (1 Torr = 1 mmHg rise inend-tidal PCO2) during the follicularand luteal phases, respectively, of the menstrual cycle(P < 0.01). The diastolic bloodpressure responses were 1.1 ± 0.2 and 2.1 ± 0.3 mmHg/Torrduring the follicular and luteal phases, respectively(P < 0.002). Heart rate responses did not differ during the luteal (1.7 ± 0.3 beats · min1 · Torr1)and follicular phases (1.4 ± 0.3 beats · min1 · Torr1;P = 0.59). These data demonstrate agreater pressor response during the luteal phase of the menstrual cyclethat may be related to higher serum progesterone concentrations.

  相似文献   

19.
Barstow, Thomas J., Andrew M. Jones, Paul H. Nguyen, andRichard Casaburi. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.J. Appl. Physiol. 81(4):1642-1650, 1996.We tested the hypothesis that the amplitude ofthe additional slow component ofO2 uptake(O2) during heavy exerciseis correlated with the percentage of type II (fast-twitch) fibers inthe contracting muscles. Ten subjects performed transitions to a workrate calculated to require aO2 equal to 50% betweenthe estimated lactate (Lac) threshold and maximalO2 (50%).Nine subjects consented to a muscle biopsy of the vastus lateralis. Toenhance the influence of differences in fiber type among subjects,transitions were made while subjects were pedaling at 45, 60, 75, and90 rpm in different trials. Baseline O2 was designed to besimilar at the different pedal rates by adjusting baseline work ratewhile the absolute increase in work rate above the baseline was thesame. The O2 response after the onset of exercise was described by a three-exponential model. Therelative magnitude of the slow component at the end of 8-min exercisewas significantly negatively correlated with %type I fibers at everypedal rate (r = 0.64 to 0.83, P < 0.05-0.01). Furthermore,the gain of the fast component forO2 (asml · min1 · W1)was positively correlated with the %type I fibers across pedal rates(r = 0.69-0.83). Increase inpedal rate was associated with decreased relative stress of theexercise but did not affect the relationships between%fiber type and O2parameters. The relative contribution of the slow component was alsosignificantly negatively correlated with maximalO2(r = 0.65), whereas the gainfor the fast component was positively associated(r = 0.68-0.71 across rpm). Theamplitude of the slow component was significantly correlated with netend-exercise Lac at all four pedal rates(r = 0.64-0.84), but Lac was notcorrelated with %type I (P > 0.05).We conclude that fiber type distribution significantly affects both thefast and slow components ofO2 during heavy exerciseand that fiber type and fitness may have both codependent andindependent influences on the metabolic and gas-exchange responses toheavy exercise.

  相似文献   

20.
Oelberg, David A., Allison B. Evans, Mirko I. Hrovat, PaulP. Pappagianopoulos, Samuel Patz, and David M. Systrom. Skeletal muscle chemoreflex and pHi inexercise ventilatory control. J. Appl.Physiol. 84(2): 676-682, 1998.To determinewhether skeletal muscle hydrogen ion mediates ventilatory drive inhumans during exercise, 12 healthy subjects performed three bouts ofisotonic submaximal quadriceps exercise on each of 2 days in a 1.5-Tmagnet for 31P-magnetic resonancespectroscopy(31P-MRS). Bilaterallower extremity positive pressure cuffs were inflated to 45 Torr duringexercise (BLPPex) or recovery(BLPPrec) in a randomized orderto accentuate a muscle chemoreflex. Simultaneous measurements were madeof breath-by-breath expired gases and minute ventilation, arterializedvenous blood, and by 31P-MRS ofthe vastus medialis, acquired from the average of 12 radio-frequencypulses at a repetition time of 2.5 s. WithBLPPex, end-exercise minuteventilation was higher (53.3 ± 3.8 vs. 37.3 ± 2.2 l/min;P < 0.0001), arterializedPCO2 lower (33 ± 1 vs. 36 ± 1 Torr; P = 0.0009), and quadricepsintracellular pH (pHi) more acid (6.44 ± 0.07 vs. 6.62 ± 0.07; P = 0.004), compared withBLPPrec. Bloodlactate was modestly increased withBLPPex but without a change inarterialized pH. For each subject, pHi was linearly relatedto minute ventilation during exercise but not to arterialized pH. Thesedata suggest that skeletal muscle hydrogen ion contributes to theexercise ventilatory response.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号