首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文对增殖期的淋巴细胞胰岛素依赖性酪氨酸蛋白激酶活性及内源性废物进行了分析研究。在纯化的健康人淋巴细胞中加入适量的植物血凝素(PHA),经过72h培养即成为转化淋巴细胞(增殖期淋巴细胞)。应用~(32)P参入实验,证实转化淋巴细胞胰岛素受体具有胰岛素依赖性的酪氨酸蛋白激酶活性,与未转化的对照组相比其活性增加约9倍。Scatchard分析表明转化后淋巴细胞膜表面胰岛素受体数增加3.5倍。应用抗酪氨酸磷酸酯抗体,对胰岛素作用前后的转化与未转化淋巴细胞内,酪氨酸残基磷酸化的蛋白进行了鉴定,结果表明:除了95kD受体β亚基自身磷酸化外,45kD蛋白质也明显磷酸化,我们命名它为PP45。我们认为PP45可能是淋巴细胞中胰岛素受体酪氨酸蛋白激酶的主要内源性废物,它的磷酸化是胰岛素信息传递过程级联反应的初始步骤。  相似文献   

2.
关于胰岛素的作用机制,目前有一种假说,认为胰岛素与其受体的α亚基结合后将信息传递给β亚基,引起β亚基酪氨酸激酶自身磷酸化而激活。酪氨酸激酶可以使细胞内其他蛋白质磷酸化,从而启动一系列细胞内事件发挥胰岛素的多重调节作用。通过近六年来的深入研究,已经了解胰岛素受体酪氨酸激酶在介导胰岛素的绝大多数生物学效应中起着关键作用。本文对这方面的研究进展情况及前景作一简要综述。 (一)胰岛素受体的结构近年来采用亲和标记、免疫沉淀、亲和层析、分子克隆等技术,对胰岛素受体的结构进行了研究。现在已了解胰岛素受体分子由两个13.5万分子量的α亚基、两个9.5万分子量的β亚基,三对二硫键连接而成。胰岛素受体的α及β亚基是由一1382个氨基酸组成的前受体原  相似文献   

3.
 本实验对狗小肠平滑肌中胰岛素受体的结构和特征进行了分析研究。通过麦胚凝集素琼脂糖和两次Sepharose-CL-6B凝胶层析从平滑肌中纯化胰岛素受体,达到电泳纯。SDS-聚丙烯酰胺凝胶电泳证明胰岛素受体是由两个亚基组成的,分子量分别为135kD和90kD。磷酸化实验证明平滑肌胰岛素受体具有胰岛素依赖性蛋白激酶活性,能催化自身的β亚基磷酸化和底物的磷酸化。Scatchard分析表明胰岛素和受体的结合呈(?)协同效应,最大结合率为13μg胰岛素/mg蛋白质。  相似文献   

4.
胰岛素的促生长作用   总被引:16,自引:1,他引:15  
除了经典的代谢调节作用之外,胰岛素还具有重要的促生长作用:在体外胰岛素能够刺激众多细胞的增殖与分化,一些实验证明胰岛素在体内可能也是一种重要的生长调节因子.胰岛素的促生长作用通过细胞表面的胰岛素受体介导,但在较高的胰岛素浓度下也可以通过类胰岛素生长因子Ⅰ(IGF-Ⅰ)受体进行,在不同细胞体系中可能会有所不同.受体后的信号转导经过了一系列磷酸化和去磷酸化等途径,其中有胰岛素受体底物1(IRS-1)、Shc蛋白、Ras蛋白以及磷酸肌醇3激酶(PI3-K)等的参与.在胰岛素的分子表面很可能存在一些区域或位点,对其促生长作用有着更大的贡献,通过对一些高促生长活性的胰岛素类似物的研究已揭示出一些初步的证据.  相似文献   

5.
目的探讨抗炎药水杨酸钠对胰岛素抵抗大鼠胰岛素敏感性的影响及其作用机制。方法分别给大鼠静脉输注脂肪乳+肝素,脂肪乳+肝素+水杨酸钠和生理盐水7 h,并在输注的最后2 h,行清醒状态高胰岛素-正血糖钳夹试验,测定血浆葡萄糖、游离脂肪酸(FFA)、胰岛素和C-肽水平,检测肝脏、肌肉中胰岛素受体底物-1(IRS-1)及307位丝氨酸磷酸化的IRS-1表达。结果输注脂肪乳大鼠葡萄糖输注率(GIR)是输注生理盐水大鼠的45%,水杨酸钠可使GIR提高1.3倍(P0.01)。脂肪乳输注组大鼠肝脏及肌肉中307位丝氨酸磷酸化的IRS-1分别为生理盐水输注组大鼠的3倍和3.8倍(P0.001),输注水杨酸钠,肝脏、肌肉307位丝氨酸磷酸化的IRS-1下降45%、20%(P0.05)。结论 FFA增高引起肝脏及肌肉中307位丝氨酸磷酸化的IRS-1水平增高,可能是导致胰岛素抵抗发生的机制之一,应用水杨酸钠,大鼠肝脏及肌肉组织中IRS-1丝氨酸磷酸化水平下降,胰岛素抵抗改善。抗炎药物水杨酸钠可能通过抑制FFA引起的IRS-1丝氨酸磷酸化,而发挥改善胰岛素抵抗的作用。  相似文献   

6.
参照Gambhir等人的报告建立了分离豚鼠、兔和鸡红细胞的方法。比较了豚鼠、兔和鸡红细胞胰岛素受体与猪胰岛素的相互作用,初步观察到不同种属动物的红细胞含胰岛素受体的数目似乎与其自身的胰岛素活力成反比。  相似文献   

7.
8.
参照Gambhir等人的报告建立了分离豚鼠、兔和鸡红细胞的方法。比较了豚鼠、兔和鸡红细胞胰岛素受体与猪胰岛素的相互作用,初步观察到不同种属动物的红细胞含胰岛素受体的数目似乎与其自身的胰岛素活力成反比。  相似文献   

9.
胰岛素受体是靶细胞膜表面固有的糖蛋白、由两个α亚单位和两个β亚单位组成、亚单位间由二硫键连结的大分子物质。其中α亚单位为结合亚单位,β亚单位为效应/调质亚单位。胰岛素与受体结合后引起β亚单位磷酸化,可能是胰岛素发挥一系列生理功能的早期现象。受体与胰岛素结合后一起内移,在细胞内分别以不同途径代谢。激素-受体复合物的内移及受体降解使细胞表面受体数减少,这是胰岛素对受体数进行减数调节的原因。  相似文献   

10.
测定了胰岛素类似物去B 链羧端七肽胰岛素(DHPI)的免疫活性和它与受体的结合能力。DHPI 能与豚鼠抗胰岛素血清反应,生成免疫沉淀条纹。经放射免疫测定,它的免疫活力是胰岛素的1.8%。DHPI 在低剂量时不能和胰岛素受体(大白鼠脂肪细胞和豚鼠红细胞)结合,高剂量时有明显结合。DHPI 与豚鼠红细胞胰岛素受体的结合不显示负协同效应,而胰岛素与它的结合显示负协同效应。  相似文献   

11.
Purified human placental insulin receptors were incorporated into small unilamellar phospholipid vesicles by the addition of n-octyl beta-glucopyranoside solubilized phospholipids, followed by removal of the detergent on a Sephadex G-50 gel filtration column and extensive dialysis. The vesicles have an average diameter of 142 +/- 24 nm by Sephacryl S-1000 gel filtration chromatography and 119 +/- 20 nm by transmission electron microscopy. These vesicles are impermeant to small molecules as indicated by their ability to retain [gamma-32P]ATP, which could be released by the addition of 0.05% Triton X-100. Detergent permeabilization or freeze-thawing of the insulin receptor containing vesicles in the presence of 125I-insulin indicated that approximately 75% of the insulin binding sites were oriented right side out (extravesicularly). Sucrose gradient centrifugation of insulin receptors incorporated at various protein to phospholipid mole ratios demonstrated that the insulin receptors were inserted into the phospholipid bilayer structure in a concentration-dependent manner. Addition of [gamma-32P]ATP to the insulin receptor containing vesicles was relatively ineffective in promoting the autophosphorylation of the beta subunit in the absence or presence of insulin. Permeabilization of the vesicles with low detergent concentrations, however, stimulated the beta-subunit autophosphorylation approximately 2-fold in the absence and 10-fold in the presence of insulin. Insulin-stimulated beta-subunit autophosphorylation was also observed under conditions such that 94% of those vesicles containing insulin receptors had a single receptor per vesicle, suggesting that the initial beta-subunit autophosphorylating activity is intramolecular. Phospho amino acid analysis of the vesicle-incorporated insulin receptors demonstrated that the basal and insulin-stimulated beta-subunit autophosphorylation occurs exclusively on tyrosine residues. It is concluded that when purified insulin receptors are incorporated into a phospholipid bilayer, they insert into the vesicles primarily in the same orientation as occurs in the plasma membrane of intact cells and retain insulin binding as well as insulin-stimulated beta-subunit autophosphorylating activities.  相似文献   

12.
Skeletal muscle rapidly develops severe insulin resistance following denervation, although insulin binding is unimpaired. Insulin-stimulated receptor tyrosyl kinase activity was studied in intact and 24-h denervated rat hind limb muscles using three preparations: (a) solubilized insulin receptors incubated +/- insulin with gamma-[32P]ATP and histone H2b; (b) soleus muscles prelabeled in vitro with [32P]phosphate with subsequent insulin-stimulated phosphorylation of the receptor in situ; (c) assessment of in vivo activation of muscle receptor tyrosyl kinase by insulin. The latter was achieved by solubilizing muscle insulin receptors in the presence of phosphoprotein phosphatase and kinase inhibitors and measuring receptor-catalyzed histone H2b phosphorylation in the presence of limiting (5 microM) gamma-[32P]ATP. Receptors isolated 5 and 30 min after intravenous insulin injection catalyzed 32P incorporation into histone H2b twice as fast as those from saline-treated controls; insulin stimulated histone H2b labeling exclusively on tyrosine. In vivo activation was demonstrated using solubilized and insulin-agarose-bound receptors. Autophosphorylation of the beta-subunit and receptor tyrosyl kinase activity toward histone H2b was stimulated by insulin in denervated muscles as in controls, although the biological response to insulin, in vitro and in vivo, was markedly impaired after denervation, suggesting a postreceptor defect. The method developed to assess insulin-stimulated receptor activation in vivo seems useful in characterizing mechanisms of insulin resistance.  相似文献   

13.
Ontogeny of insulin receptors in the rat hemochorial placenta   总被引:1,自引:0,他引:1  
Binding of 125I-insulin to rat placental membranes was time and protein concentration dependent, reversible, and specific. Unlabeled porcine insulin competed for 125I-insulin binding with an IC50 of 65 nM, while IGF-I was much less potent with an IC50 of 2.12 mM. Specific binding of 125I-insulin decreased during the second half of gestation from Days 11 to 19. Scatchard analysis of the binding data for membranes prepared from Gestation Days 11 and 19 yielded typical curvilinear plots which showed a marked decrease in the number of binding sites in late gestation placenta. Beginning on Day 14, insulin binding was characterized with isolated labyrinth and basal zone portions of the hemochorial placenta. There was no evidence for differences in Kd values or the number of binding sites in these two functionally distinct portions of the rat placenta. Crosslinking of 125I-insulin followed by SDS-PAGE showed a single protein with a molecular weight of 130,000 from placental tissues on Gestation Days 11 and 19 and confirmed a gestational decrease in the number of insulin receptors. In solubilized, lectin-purified preparations from placenta and liver membranes, insulin stimulated the phosphorylation of a Mr 95,000 protein. 32P-incorporation into this 95,000 protein was stimulated fivefold by insulin in Day 11 placenta receptor, whereas no detectable 32P-incorporation was found in Day 19 placenta. Thus, while the alpha- and beta-subunits of insulin receptors in mid and late gestation placenta have molecular weights which are similar to receptors in maternal liver, data indicate the presence of a functional difference in insulin-stimulated kinase activities.  相似文献   

14.
Cultured human urinary bladder carcinoma cells ( JTC -32) were used to investigate the regulation of insulin receptors by dexamethasone. When the cells were preincubated with dexamethasone at 37 degrees C, insulin binding sites increased up to 24 h. A large increase in insulin binding sites took place for 14 h of preincubation with dexamethasone. At lower concentrations of dexamethasone (less than 1 nM), no significant increase in insulin binding sites was observed, but the maximal increase was observed at more than 10 nM. Scatchard plots showed that dexamethasone increased the number of high affinity insulin binding sites (2.8 fold) without any change in the apparent equilibrium constant in JTC -32 cells. In addition, this steroid hormone also increased the number of low affinity insulin binding sites (1.6 fold) with a small change in the apparent equilibrium constant. Although insulin and dexamethasone did not affect the number of cells or the amount of cellular proteins per dish, dexamethasone plus insulin slightly increased them.  相似文献   

15.
We investigated whether insulin forms covalent bonds with its receptors on erythrocytes and reticulocytes, as it does in adipocytes (1). Of the [125I]-insulin specifically bound at 37 degrees C to human and rat erythrocytes and rat reticulocytes, only 1.5-2.3% was non-dissociable on extensive washing. When ghosts prepared from the washed cells were solubilized in Triton X-100, only 0.6-1.5% of the specifically bound radioactivity appeared in the void volume of a Sephadex G-50 column. Moreover in contrast to adipocytes, this high molecular weight radioactivity was not immunoprecipitable by antibodies to the insulin receptor and was dissociated during chromatography in sodium dodecyl sulphate. Thus we have been unable to demonstrate the formation of covalent bonds between insulin and its receptors on erythrocytes and reticulocytes. This finding is consistent with the hypothesis that covalent binding of insulin is a necessary receptor modification for insulin's metabolic effects.  相似文献   

16.
Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 and partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor alpha subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[gamma-32P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor beta subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins.  相似文献   

17.
Abstract

The effect of three antibodies that interact with distinct regions of the insulin receptor (the a subunit (83-7), the juxtamembrane region near tyrosine 960 (960) or the carboxy terminal region of the I3 subunit (CT-1)) on insulin binding was examined. Detergent-solubilized insulin receptors from IM-9 cells immobilized on Sepharose beads by 960 antisera bound 2-3 times more IWinsulin tracer (25-60 pM) than receptors immobilized with either 83-7 or CT-1. &-incubation of solubilized receptors with either 83-7 or 960 resulted in equivalent depletion (90%) of insulin binding activity from solubilized IM-9 cell extracts, suggesting that both antibodies were in excess and capable of binding a similar population of receptors. Antibody 960, but not CT-1 or 83-7, also increased insulin binding 2 fold to solubilized receptors precipitated with polyethylene glycol. To determine whether the altered binding observed with antibody 960 was due to increased affinity of the receptor for insulin or appearance of more insulin binding sites, binding studies were performed over a wide range of insulin concentrations. Analysis of the resulting binding curves indicated that 960 increased the affinity of the receptor for insulin 3 fold over control (b= 0.3 nM for 960, and 0.9 nM for 83-7, respectively). The antibody 960 also specifically increased insulin binding to intact, saponin-permeabilized IM-9 cell membranes. These results indicate that binding of 960 antibody to the juxtamembrane region of the insulin receptor alters the affmity of the receptor for insulin. Since tyrosine 960 in the juxtamembrane region has been suggested to play a role in receptor signalling, changes in receptor conformation in this region that are likely to account for the change in affinity may play a role in signal transduction.  相似文献   

18.
Regulation of the insulin receptor kinase by hyperinsulinism   总被引:3,自引:0,他引:3  
A murine fibroblast cell line transfected with human insulin receptor cDNA, NIH 3T3 HIR3.5, was observed to display insulin-induced down-regulation of insulin-binding activity in a time- and concentration-dependent manner. Maximal inhibition of insulin-binding activity (54%) occurred within 16 h of exposure to 100 nM insulin in vivo, where in vivo refers to intact cells in tissue culture. The decrease in cellular insulin-binding activity was the consequence of a decrease in the number of cell-associated insulin receptors as determined by Scatchard analysis of insulin binding, 125I-insulin affinity cross-linking, and Western blotting of the insulin receptor beta subunit. Acute insulin treatment in vivo (1-60 min) resulted in the activation of the insulin receptor protein tyrosine kinase as determined by in vitro phosphorylation of glutamic acid:tyrosine (4:1), where in vitro refers to broken cell preparations. This acute in vivo insulin activation of the insulin receptor tyrosine kinase resulted in a greater stimulation (1.4-1.9-fold) of tyrosine kinase activity in the glutamic acid:tyrosine (4:1) assay than the maximal stimulation produced by insulin treatment in vitro. In contrast, long term (24 h) insulin treatment in vivo resulted in a 50-70% decrease in intrinsic protein tyrosine kinase activity of the insulin receptors compared with that of acutely activated (1 min) insulin receptors. Under these conditions, the insulin receptor protein kinase activity remained insulin independent in the in vitro substrate kinase assay. Surprisingly, the insulin-independent activated (1 min in vivo insulin-treated) and uncoupled (24 h in vivo insulin-treated) insulin receptors displayed similar stoichiometries of 32P incorporation into the beta subunit by in vitro autophosphorylation when compared with the control insulin receptors, ranging from 1.5 to 1.8 mol of phosphate incorporated/mol of insulin receptor. Phosphoamino acid analysis demonstrated that the phosphoserine/phosphothreonine content of in vivo 32P-labeled insulin receptors increased markedly within a 1-h exposure to insulin in vivo, whereas insulin-induced receptor desensitization was not apparent until 10-24 h after exposure to insulin. These data suggest that insulin treatment in vivo results initially in the activation of the insulin receptor kinase followed by a subsequent uncoupling of protein kinase activity. This insulin-induced desensitization of the insulin receptor kinase does not correlate with the extent of beta subunit serine/threonine phosphorylation.  相似文献   

19.
刘志民  徐仁宝 《生理学报》1991,43(5):504-507
在人体白细胞培养基质中加入不同浓度的胰岛素,3h 和24h 后以[~3H]标记的地塞米松([~3H] Dex)特异结合力为指标,研究了胰岛素对糖皮质激素受体(GR)的抑制作用。在基质中分别加入 20mU/L(生理浓度),200mU/L(生理调节时最高血浓度)及2000mU/L(药理浓度),3h 后和不含胰岛素的对照值比,[~3H] Dex 的特异结合力分别减少23.3±10.0,32.2±13.2及54.3±9.2%(P>0.05,P>0.05及P<0.01;24h 后,和对照值相比,特异结合力分别减少43.5±19.0,56.1±20.7和80.2±15.5(P<0.05,P7<0.01,P<0.01)。胰岛素对 GR 特异结合力的抑制效应呈剂量和时间依赖性,它提示了胰岛素浓度在生理条件下对 GR 有紧张性调控作用。  相似文献   

20.
We have demonstrated the formation of hybrid insulin/insulin-like growth factor-I(IGF-I) receptors in transfected rodent fibroblasts, which overexpress human receptors, by examining reactivity with species- and receptor-specific monoclonal antibodies. In NIH 3T3 and Rat 1 fibroblasts, endogenous IGF-I receptors were unreactive with anti-(human insulin receptor)monoclonal antibodies (47-9, 25-49, 83-14, 83-7, 18-44). However, in transfected cells expressing high levels of insulin receptors, 60-80% of high-affinity IGF-I receptors reacted with these antibodies, as assessed either by inhibition of ligand binding in intact cells or by precipitation of solubilized receptors. Conversely, endogenous insulin receptors in NIH 3T3 cells were unreactive with anti-(IGF-I receptor) antibodies alpha IR-3 and 16-13. However, approx. 50% of high-affinity insulin receptors reacted with these antibodies in cells expressing high levels of human IGF-I receptors. The hybrid receptors in transfected cells bound insulin or IGF-I with high affinity. However, responses to these ligands were asymmetrical, in that binding of IGF-I inhibited subsequent binding of insulin, but prior binding of insulin did not affect the affinity for IGF-I. The existence of hybrid receptors in normal tissues could have important implications for metabolic regulation by insulin and IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号