首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of the B-protein of fd phage with the model lipid dipalmitoyl phosphatidylcholine (DPPC) were made by sonication of the fd phage in the presence of dipalmitoyl phosphatidylcholine. Both laser Raman spectra and circular dichroism show the protein in the membrane to be almost entirely in the β-sheet conformation. This β-sheet conformation is found to be independent of the temperature between 10° C and 50° C. On the other hand, the protein has a very dramatic effect on the organization of the lipid bilayer. An aqueous dispersion of 1 : 1 lipid/protein mixture gives a broad conformational transition of DPPC which occurs between 10° C and 30° C. This contrasts markedly with simple aqueous DPPC dispersions which show a sharp transition at 41°C. This appears to be the first reported example of the lowering of the conformational transition of a membrane bilayer by an intrinsic membrane protein.  相似文献   

2.
Several lines of evidence suggest that nonspecific drug interaction with the lipid bilayer plays an important role in subsequent recognition and binding to specific receptor sites in the membrane. The interaction of Bay K 8644, a 1,4-dihydropyridine (DHP) calcium channel agonist, with model and biological membranes was examined at the molecular level using small angle x-ray diffraction. Nonspecific drug partitioning into the membrane was examined by radiochemical assay. Nonspecific binding characteristics of [3H] Bay K 8644 were determined in both dipalmitoyl phosphatidylcholine (DPPC) vesicles above and below their thermal phase transition (Tm) and rabbit skeletal muscle light sarcoplasmic reticulum (LSR). In DPPC, the partition coefficient, Kp, was 14,000 above the Tm (55 degrees C) versus 160 in the gel phase (2 degrees C). The Kp determined in LSR membranes was 10,700. These values for both DPPC and LSR membranes can be compared with Kp = 290 in the traditional octanol/buffer system. Using small-angle x-ray diffraction, the equilibrium position of the electron-dense trifluoromethyl group of Bay K 8644 in DPPC (above Tm) and purified cardiac sarcolemmal (CSL) lipid bilayers was determined to be consistently located within the region of the first few methylene segments of the fatty acyl chains of these membranes. This position is similar to that observed for the DHP calcium channel antagonists nimodipine and Bay P 8857. We suggest this particular membrane location defines a region of local drug concentration and plane for lateral diffusion to a common receptor site. Below the DPPC membrane Tm, Bay K 8644 was shown to be excluded from this energetically favored position into the interbilayer water space. Heating the DPPC bilayer above the Tm (55 degrees C) showed that this exclusion was reversible and indicates that drug-membrane interaction is dependent on the bilayer physical state. The absence of any specific protein binding sites in these systems allows us to ascertain the potentially important role that the bulk lipid phase may play in the molecular mechanism of DHP binding to the specific receptor site associated with the calcium channel.  相似文献   

3.
Both wide-angle and lamellar x-ray diffraction data are interpreted in terms of a difference in hydrocarbon chain tilt between fully hydrated dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE). Although the hydrocarbon chains of multilayers of DPPC tilt ty approximately 30 degrees relative to the normal to the plane of the bilayer, as previously reported by others, the hydrocarbon chains of DPPE appear to be oriented approximately normal to the plane of the bilayer. It is found that the chain tilt in DPPC bilayers can be reduced by either: (a) adding an n-alkane to the bilayer interiors or (b) adding lanthanum ions to the fluid layers between bilayers. A molecular packing model is presented which accounts for these data. According to this model, DPPC chains tilt because of the size and conformation of the PC polar head group.  相似文献   

4.
The effects of pulsed 130 GHz radiations on lipid membrane permeability were investigated by using cationic liposomes containing dipalmitoyl phosphatidylcholine (DPPC), cholesterol, and stearylamine. Carbonic anhydrase (CA) was loaded inside the liposomes and the substrate p-nitrophenyl acetate (p-NPA) added in the bulk aqueous phase. Upon permeation across the lipid bilayer, the trapped CA catalyzes the conversion of the p-NPA molecules into products. Because the self-diffusion rate of p-NPA across intact liposomes is very low the CA reaction rate, expressed as Delta A/min, is used to track membrane permeability changes. The effect of 130 GHz radiation pulse-modulated at low frequencies of 5, 7, or 10 Hz, and at time-averaged incident intensity (I(AV)) up to 17 mW/cm(2) was studied at room temperature (22 degrees C), below the phase transition temperature of DPPC liposomes. At all the tested values of I(AV) a significant enhancement of the enzyme reaction rate in CA-loaded liposomes occurred when the pulse repetition rate was 7 Hz. Typically, an increase from Delta A/min = 0.0026 +/- 0.0010 (n = 11) to Delta A/min = 0.0045 +/- 0.0013 (n = 12) (P < 0.0005) resulted at I(AV) = 7.7 mW/cm(2). The effect of 130 GHz pulse-modulated at 7 Hz was also observed on cationic liposomes formed with palmitoyloleoyl phosphatidylcholine (POPC), at room temperature (22 degrees C), above the phase transition temperature of POPC liposomes.  相似文献   

5.
Fluorescein-PE is a fluorescence probe that is used as a membrane label or a sensor of surface associated processes. Fluorescein-PE fluorescence intensity depends not only on bulk pH, but also on the local electrostatic potential, which affects the local membrane interface proton concentration. The pH sensitivity and hydrophilic character of the fluorescein moiety was used to detect conformational changes at the lipid bilayer surface. When located in the dipalmitoylphosphatidylcholine (DPPC) bilayer, probe fluorescence depends on conformational changes that occur during phase transitions. Relative fluorescence intensity changes more at pretransition than at the main phase transition temperature, indicating that interface conformation affects the condition in the vicinity of the membrane. Local electrostatic potential depends on surface charge density, the local dielectric constant, salt concentration and water organisation. Initial increase in fluorescence intensity at temperatures preceding that of pretransition can be explained by the decreased value of the dielectric constant in the lipid polar headgroups region related in turn to decreased water organisation within the membrane interface. The abrupt decrease in fluorescence intensity at temperatures between 25 degrees C and 35 degrees C (DPPC pretransition) is likely to be caused by an increased value of the electrostatic potential, induced by an elevated value of the dielectric constant within the phosphate group region. Further increase in the fluorescence intensity at temperatures above that of the gel-liquid phase transition correlates with the calculated decreased surface electrostatic potential. Above the main phase transition temperature, fluorescence intensity increase at a salt concentration of 140 mM is larger than with 14 mM. This results from a sharp decline of the electrostatic potential induced by the phosphocholine dipole as a function of distance from the membrane surface.  相似文献   

6.
We studied the interaction between an apolipoprotein of pulmonary surfactant and the principal lipid found in this material, dipalmitoyl phosphatidylcholine. The apolipoprotein was extracted from canine surfactant and purified to greater than 90% homogeneity. The apolipoprotein was mixed for 16 h at room temperature with dipalmitoyl phosphatidylcholine dispersed in a buffer containing 0.1 M NaCl and 3mM CaCl2. Unbound lipid, unbound protein, and recombinants of lipid and protein were separated by density gradient centrifugation. 71% of the apolipoprotein was found associated with dipalmitoyl phosphatidylcholine. In comparable experiments using bovine plasma albumin about 13% of the albumin was recovered with the lipid. The physicochemical state of the lipid in the apolipoprotein-lipid complex was modified after binding of the protein. A distinct phase transition at 42 degrees C could no longer be detected, and the rate of adsorption to an air-liquid interface of the apolipoprotein-lipid complex was greater than that of the lipid alone. Surface tension vs. surface area isotherms of the dipalmitoyl phosphatidylcholine-apolipoprotein materials, however, were similar to those exhibited by pure dipalmitoyl phosphatidylcholine. The results suggest a physiological role for this apolipoprotein. It may bind to dipalmitoyl phosphatidylcholine under conditions expected in vivo, and may modify the physical properties of the aggregated dipalmitoyl phosphatidylcholine to form domains of lipid in a liquid-crystalline array. The complex dipalmitoyl phosphatidylcholine and apolipoprotein would have the physical properties necessary for its physiological function, allowing it to absorb to the alveolar interface and reduce its surface tension to less than 10 dynes/cm. Dipalmitoyl phosphatidylcholine, by itself, is in a gel-crystalline array below its phase transition temperature (42 degrees C) and would be incapable of effecting these actions.  相似文献   

7.
The effects of juvenile hormone and its analogs Altozar 4E and ZR-777 5E on the phase properties of liposomes prepared from dipalmitoyl phosphatidyl-choline (DPPC) have been examined by differential scanning calorimetry. Each of these compounds reduced the co-operativity of the gel to liquid-crystalline phase transition, which is manifest as a distinct broadening of the main transition endotherm, and split the transition into two distinguishable components centered at 34 and 37°C. However, there was no significant change in enthalpy of the main phase transition, suggesting that juvenile hormone and its analogs perturb the bilayer primarily in the vicinity of the phospholipid headgroups. Moreover, this perturbation does not appear to influence bilayer permeability since the osmotic swelling rates of liposomes prepared from either phosphatidylcholine or dipalmitoyl phosphatidylcholine that contained up to 33 mol% juvenile hormone were not significantly different from the swelling rates of corresponding liposomes containing no juvenile hormone. Splitting of the transition endotherm into two peaks appeared to be peculiar to compounds possessing juvenile hormone activity. A mixture of fatty acid methyl esters broadened the main transition of DPPC, but did not split the endotherm or shift the transition midpoint, and the insect hormone ecdysone had no discernible effect on the DPPC transition apart from eliminating the pretransition. The data indicate that juvenile hormone and its analogs can modulate the physical properties of phospholipid bilayers, and raise the prospect that some of the physiological effects of this hormone may be achieved through its influence on the molecular organization of membrane lipid.  相似文献   

8.
The rates of uptake and release of 2,2,6,6 tetramethyl piperidinyl-l-oxycholine (Tempo-choline) for vesicles made of dipalmitoyl phosphatidylcholine (DPPC) and of egg phosphatidylcholine-cholesterol mixtures were measured by ESR and found to have interesting temperature-dependences. In the former case, both rates exhibit a sharp maximum at the critical temperature of phase transition of the bilayer membrane. In the latter case, the permeability of the membrane to Tempo-choline is asymmetric with respect to uptake and release: uptake is appreciable at temperatures higher than 66 degrees C, while release is observable only at temperatures higher than 80 degrees C. The asymmetric permeability is explained in terms of the asymmetric distribution of cholesterol between the outer and inner membranes of the vesicle.  相似文献   

9.
Pretransition and main transition of aqueous dipalmitoyl phosphatidylcholine (DPPC) dispersions were investigated by pulse NMR. The second moment M2 inter of the proton absorption line shows significant changes at 42 degrees C and about 35 degree C. Over the whole investigated temperature range between 25 and 50 degree C a superposition of at least two distinct second moments assigned to different molecular regions was observed.  相似文献   

10.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

11.
The chain-melting transition temperature of dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was determined by optical turbidity measurements. The dependence on content, Xp, of PEG-DPPE lipid was studied for different polar headgroup sizes, np, of the polymer lipid, throughout the lamellar phase of the mixtures with DPPC. Mean-field theory for the polymer brush regime predicts that the downward shift in transition temperature should vary with polymer size and content as npXp(5/3) (approximately npXp(11/6) for scaling theory). Any shift induced by the charge on PEG-lipids is independent of polymer size. These predictions are reasonably borne out for the longer polymer lipids (PEG molecular masses 750, 2000 and 5000 Da). Transition temperature shifts in the lamellar phase, before the onset of micellisation, are in the region of -1 to -2 degrees C (+/-0.1-0.2 degrees C) in reasonable accord with theoretical estimates of the lateral pressure exerted by the polymer brush. Shifts of this size are significant to the design of liposomes for controlled release of contents by mild hyperthermia.  相似文献   

12.
A cooperative alignment of lipid chains in dipalmitoyl phosphatidylcholine (DPPC) bilayers was detected by using oriented multilayers containing small amounts of spin-labeled phosphatidylcholine. It is shown that a significant angle of tilt exists along the entire length of the lipid chains in DPPC. This behavior is compared with that of the more complex egg phosphatidylcholine bilayers. The lipid chains do not have the alignment of a single crystal but evidently exist in domains consisting of either clusters within a bilayer or successive layers out of register in the stacked multilayer.  相似文献   

13.
Isolated mammalian cytochrome oxidase gave an Arrhenius plot with a break (Tb) at about 20 degrees C when assayed in a medium containing Emasol. The activation energies above and below 20 degrees C were 9.3 (EH) and 18.9 kcal/mol (EL), respectively. Isolated cytochrome oxidase was also incorporated into vesicles of dipalmitoyl phosphatidylcholine (DPPC, phase transition temperature Tt = 40 degrees C), dimyristoyl phosphatidylcholine (DMPC, Tt = 23 degrees C) and dioleoyl phosphatidylcholine (DOPC, Tt = -22 degrees C). The DPPC system showed a nearly linear Arrhenius plot between 9 and 36 degrees C with E = 22.8 kcal/mol. When cytochrome oxidase was resolubilized from the DPPC vesicles and assayed in solution a biphasic plot was obtained again. Cytochrome oxidase-DOPC was more active than the solubilized enzyme and exhibited a biphasic Arrhenius plot with Tb = 23 degrees C. EH and EL were 6.6 and 15.8 kcal/mol, respectively. The plot for the oxidase-DMPC also showed a break (Tb = 26 degrees C) with EH = 6.6 and EL = 26.6 kcal/mol. These results indicate that the break in the Arrhenius plot reflects primarily a structural transition in the cytochrome oxidase molecule between the "hot" and "cold" conformations, as proposed previously. This transition, as well as the molecular state of cytochrome oxidase, is affected by the physical state of the membrane lipids as reflected by changes in the kinetic properties.  相似文献   

14.
Membranes of thermophilic Archaea are composed of unique tetraether lipids in which C40, saturated, methyl-branched biphytanyl chains are linked at both ends to polar groups. In this paper, membranes composed of bipolar lipids P2 extracted from the acidothermophile archaeon Sulfolobus solfataricus are studied. The biophysical basis for the membrane formation and thermal stability is investigated by using electron spin resonance (ESR) of spin-labeled lipids. Spectral anisotropy and isotropic hyperfine couplings are used to determine the chain flexibility and polarity gradients, respectively. For comparison, similar measurements have been carried out on aqueous dispersions of diacyl reference lipid dipalmitoyl phosphatidylcholine and also of diphytanoyl phosphatidylcholine, which has methyl-branched chains. At a given temperature, the bolaform lipid chains are more ordered and less flexible than in normal bilayer membranes. Only at elevated temperatures (80 degrees C) does the flexibility of the chain environment in tetraether lipid assemblies approach that of fluid bilayer membranes. The height of the hydrophobic barrier formed by a monolayer of archaebacterial lipids is similar to that in conventional fluid bilayer membranes, and the permeability barrier width is comparable to that formed by a bilayer of C16 lipid chains. At a mole ratio of 1:2, the tetraether P2 lipids mix well with dipalmitoyl phosphatidylcholine lipids and stabilize conventional bilayer membranes. The biological as well as the biotechnological relevance of the results is discussed.  相似文献   

15.
Shaw AW  McLean MA  Sligar SG 《FEBS letters》2004,556(1-3):260-264
Nanoscale protein supported phospholipid bilayer discs, or Nanodiscs, were produced for the purpose of studying the phase transition behavior of the incorporated lipids. Nanodiscs and vesicles were prepared with two phospholipids, dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine, and the phase transition of each was analyzed using laurdan fluorescence and differential scanning calorimetry. Laurdan is a fluorescent probe sensitive to the increase of hydration in the lipid bilayer that accompanies the gel to liquid crystalline phase transition. The emission intensity profile can be used to derive the generalized polarization, a measure of the relative amount of each phase present. Differential scanning calorimetry was used to further quantitate the phase transition of the phospholipids. Both methods revealed broader transitions for the lipids in Nanodiscs compared to those in vesicles. Also, the transition midpoint was shifted 3-4 degrees C higher for both lipids when incorporated into Nanodiscs. These findings are explained by a loss of cooperativity in the lipids of Nanodiscs which is attributable to the small size of the Nanodiscs as well as the interaction of boundary lipids with the protein encircling the discs. The broad transition of the Nanodisc lipid bilayer better mimics the phase behavior of cellular membranes than vesicles, making Nanodiscs a 'native-like' lipid environment in which to study membrane associated proteins.  相似文献   

16.
We report here on a series of studies aimed at characterization of the structural and dynamical properties of the synthetic lipid diphytanoyl phosphatidylcholine, in multilamellar dispersions and vesicle suspensions. The lipid exhibits no detectable gel to liquid crystalline phase transition over a large temperature range (-120 degrees C to +120 degrees C). Examination of proton nuclear magnetic resonance (NMR) free induction decays obtained from multilayer dispersions of diphytanoyl phosphatidylcholine provided an estimate of the methylene proton order parameter. The estimated magnitude of 0.21 is comparable to those determined for other phospholipids. Sonication of aqueous dispersions of diphytanoyl phosphatidylcholine led to formation of bilayer vesicles as determined by the measurement of the outer/inner choline methyl proton resonances, vesicle sizes in electron micrographs, and comparison of proton NMR linewidths between multilayer and sonicated dispersions. Ultracentrifugation studies of diphytanoyl phosphatidylcholine vesicles in H2O and 2H2O media yielded a value of 1.013 +/- 0.026 ml/g for the partial specific volume of this lipid. We have measured spin lattice relaxation rates for the methyl and methylenemethyne protons of the hydrocarbon chains of diphytanoyl phosphatidylcholine in bilayer vesicles over a range of temperatures and at two NMR frequencies (100 and 220 MHz). The observed relaxation rates for the methylene protons in this system were approximately twice those previously reported for dipalmitoyl phosphatidylcholine at comparable temperatures and resonance frequencies, whereas the relaxation rates measured for the methyl protons were greater than those of the straight chain lipid by an order of magnitude. Measurement of the spin lattice relaxation rates of the hydrocarbon protons of the diphytanoyl phosphatidylcholine in a 10 mol% mixture of the branched-chain lipid in a deuterated host lipid, diperdeuteropalmitoyl phosphatidylcholine, showed a discontinuity in the temperature dependence of the proton NMR longitudinal relaxation rates of the branched-chain lipid in the region of the gel to liquid crystalline phase transition temperature of the deuterated dipalmitoyl phosphatidylcholine host lipid. This result may be taken as evidence of lateral phase separation of a liquid cyrstalline phase enriched in diphytanoyl phosphatidylcholine from a gel phase enriched in diperdeuteropalmitoyl phosphatidylcholine at temperatures below the phase transition temperature of deuterated host lipid. This conclusion is supported by the observation of an abrupt change in the hydrocarbon methylene linewidth (at 100 MHz) of 10 mol% diphytanoyl phosphatidylcholine in diperdeuteropalmitoyl phosphatidylcholine over the temperature range where lateral phase separation is taking place according to differential thermograms.  相似文献   

17.
Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from < or =27 degrees C to > or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.  相似文献   

18.
A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure.  相似文献   

19.
Structure of Sphingomyelin Bilayers: A Simulation Study   总被引:3,自引:1,他引:2       下载免费PDF全文
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC.  相似文献   

20.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号