首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli (2492/pJB4JI) matings with Erwinia chrysanthemi produced kanamycin resistant (Kmr) transconjugants, a majority of which were gentamicin sensitive (Gms). A small proportion (about 0.8%) of the Kmr Gms clones were either auxotrophic or failed to catabolize galacturonate (Gtu). The R plasmid (pJB4JI) DNA was detected in the parent E. coli strain and in a Kmr Gmr transconjugant, but not in Kmr GmsE. chrysanthemi strains carrying Tn5-induced mutations. In Hfr crosses, Kmr (Tn5) was found linked with most mutations. A majority (>95%) of prototrophic recombinants were Kms, except for Leu+ and Arg+ recombinants which were 30 to 50% Kms. Spontaneous revertants were obtained for all markers except car, gtu, lys, thr, and trp. Prototrophic revertants, with the exception of Met+, Leu+, or His+ clones, were Kms. We conclude from both genetic and physical data that Tn5 transposed from pJB4JI into different sites on the chromosome of E. chrysanthemi.  相似文献   

2.
Extracellular polysaccharides (EPS) of a copper-sensitive (Cus) and a copper-resistant (Cur) Pseudomonas aeruginosa strain were investigated in terms of their production, chemical nature and response towards copper exposure. The extent of EPS synthesis by the resistant strain (4.78 mg mg–1 cell dry wt.) was considerably higher over its sensitive counterpart (2.78 mg mg–1 dry wt.). FTIR-spectroscopy and gas chromatography revealed that both the polymers were acidic in nature, containing alginate as the major component along with various neutral- and amino-sugars. Acid content in the Cur EPS (480.54 mg g–1) was greater than that in the Cus EPS (442.0 mg g–1). Presence of Cu2+ in the growth medium caused a dramatic stimulation (approximately 4-fold) in EPS synthesis by the Cur strain, while in a similar condition, the Cus failed to exhibit such response. The polymer of the resistant strain showed elevated Cu2+ binding (320 mg g–1 EPS) compared to that of the sensitive type (270 mg g–1). The overall observations show the potential of the Cur EPS for its deployment in metal bioremediation.  相似文献   

3.
Cation/proton antiport systems in Escherichia coli.   总被引:7,自引:0,他引:7  
Three distinct systems which function as proton/cation antiports have been identified in E.coli by the ability of the ions to dissipate the ΔpH component of the protonmotive force in everted vesicles. System I exchanges H+ for K+, Rb+ or Na+; System II has Na+ and Li+ as substrates; and System III catalyzes proton exchange for Ca2+, Mn2+ or Sr2+.  相似文献   

4.
Energy-dependent concentrative uptake of 14CH3NH3+ by cells of Escherichia coli provides preliminary evidence for one or more transport systems for NH4+ uptake. NH4+, but not glutamic acid, inhibited the uptake of 14CH3NH3+. Varying the pH for the uptake assays exposed two apparent systems: one maximally functioning at pH 7 that was strongly inhibited by cyanide or by the uncoupler m-chlorophenyl carbonylcyanide hydrazone and another maximally functioning at pH 9 and resistant to cyanide or m-chlorophenyl carbonylcyanide hydrazone. Kinetic analysis showed considerable experimental variability from day to day. Often simple Michaelis-Menten kinetics were not followed, but NH4+ was reproducibly a stronger inhibitor of uptake of 14CH3NH3+ than was nonradioactive CH3NH3+.  相似文献   

5.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

6.
We have measured the magnetic susceptibility in the temperature range 1.4–77°K of three derivatives of bovine superoxide dismutase in which Co2+ was substituted for Zn2+: (1) 2Co2+ — in which Co2+ binds to the normal Zn2+ site and the Cu2+ site is unoccupied, (2) 2Co2+2Cu2+ — in which the Zn2+ site is occupied by Co2+ and the copper sites contains Cu2+ and (3) 2Co2+2Cu+ — which is the reduced form of the second derivative. The 2Co2+ protein exhibits Curie paramagnetism indicating S′ = 12 and the zero-field splitting must be greater than ?20 cm?1. The same propeties have been observed with the 2Co2+2Cu+-protein. By contrast, the 2Co2+2Cu2+-derivative exhibits relatively little paramagnetism, some of which arises from non-specifically associated metal ions. The lower susceptibility is due to antiferromagnetic coupling between Co2+ and Cu2+, and the magnitude of the coupling constant is probably ?5 cm?1.  相似文献   

7.
Na+-dependent transport of methyl-β-D-thiogalactopyranoside (TMG) mediated by the melibiose transport system was investigated in Escherichia coli mutants lacking the lactose transport system. When an inwardly-directed electro-chemical potential difference of Na+ was imposed across the membrane of energy depleted cells, transient uptake of TMG was observed. Addition of TMG to cell suspensions under anaerobic conditions caused a transient acidification of the medium. This acidification was observed only in the presence of Na+ or Li+. These results support the idea that TMG is taken up by a mechanism of Na+-TMG co-transport via the melibiose transport system in Escherichia coli.  相似文献   

8.
Synthesis of diphtheria toxin in E. coli cell-free lysate   总被引:7,自引:0,他引:7  
An E. coli cell-free lysate was used to translate C. diphtheriae RNA from nontoxinogenic C7(?), C7 infected with β tox+ corynebacteriophage, and C. diphtheriae strain PW8. De novo synthesis of toxin was detected by immune precipitation with antitoxin, ADP-ribosylation of mammalian elongation factor 2 and rabbit skin test. The results indicated that toxin is produced in the E. coli protein synthesizing system primed with RNA from cells infected with tox+ bacteriophage and is absent in systems primed with RNA from C7(?) cells.  相似文献   

9.
A deletion mutant was isolated from a kanamycin resistance R plasmid Rtsl. This mutant plasmid, pTW20, was found to enhance the lethal effect of UV irradiation on Escherichiacoli host, especially at 42°C. A cloning experiment with pTW20 DNA demonstrated that the gene, puv, being responsible for the UV sensitivity was located on the kanamycin resistance gene containing BamH1 fragment of pTW20. This fragment conferred a sensitivity to methyl methane sulfonate on its host along with the sensitivity to UV, suggesting that a reapir process of the host chromosome is impaired by the presence of puv.  相似文献   

10.
Summary The hypersensitive response of tobacco to inoculation with tobacco mosaic virus (TMV) is controlled by a single dominant gene, the N gene. As a first step in localizing and transferring the N gene, we have prepared a line of tobacco plants in which the kanamycin-resistance (Kmr) gene is closely linked to the N gene. Nicotiana tabacum plants heterozygous for the N gene were transformed to Kmr by Agrobacterium carrying pMON200. Eighty-nine independent transformed clones were regenerated and were backcrossed with nontransformed, TMV-sensitive plants. Progeny from these crosses were screened first for Kmr; then the Kmr progeny were inoculated with TMV and scored for the hypersensitive response. Of the initial 89 clones, 68 appeared to have integrated a single functional Kmr gene. Initial tests for TMV resistance indicated possible linkage between Kmr and the N gene in 11 plants. With further testing, linkage has been established for two of these plant lines. In one of these lines, the two genes were 30–40 map units apart, and evidence of somatic instability in the linkage was obtained. However, in the second line, linkage between Kmr and the N gene was tight, and recombination between the genes in this case was only 5%. Southern hybridization revealed that this plant contained only a single copy of the Kmr gene. Linkage between Kmr and the N gene in this plant line has been verified in each of two additional backcross generations.Abbreviations nptII Neomycin phosphotransferase gene - Kmr kanamycin resistant - Kms kanamycin sensitive - TMV tobacco mosaic virus - TMV-R TMV resistant - TMV-S TMV sensitive  相似文献   

11.
In bacterial extracts streptomycin is known not only to inhibit ribosomal activity but also to cause gradual release of ribosomes from polysomes. Nevertheless, we now find that after streptomycin has virtually halted protein synthesis in cells of Escherichia coli K12 a substantial (though reduced) level of polysomes persists. These polysomes are evidently maintained by turnover rather than by static blockade, for in streptomycin-treated cells [3H]uracil pulses are rapidly incorporated in the polysomal messenger RNA; moreover, if the synthesis of RNA or the formylation of methionyl-transfer RNA is blocked the polysome level decreases rapidly. Streptomycin thus appears to cause a cycle of ribosomal initiation, blockage of chain extension, gradual release, and reinitiation.The resulting cyclic blockade of initiation sites can account for the dominance of streptomycin sensitivity over resistance in strsstrr2 heterozygotes. In confirmation of this model, the inactive resistant ribosomes in treated heterozygotes were found to resume activity if the cells were lysed and excess messenger was provided. These findings further suggest that in sensitive cells damage to only a fraction of the ribosomal population by streptomycin may be sufficient to block protein synthesis.  相似文献   

12.
Active transport of inorganic phosphate into whole cells of a strain (AB3311) derived from Escherichia coli K12 was found to be partially resistant to 50 μM carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a powerful uncoupler of oxidative phosphorylation. The presence of 10 mM dithiothreitol (DTT) before the addition of CCCP completely prevented the inhibition of phosphate uptake caused by the uncoupler. The addition of DTT to the CCCP-inhibited system restored phosphate uptake to the control rate even when added 5 min after the phosphate transport assay was started. This uncoupler resistant transport is insensitive to anaerobiosis, or the addition of 10 mM KCN which reduces oxygen consumption to less than 1% that of aerobic controls. Additional studies of transport in a mutant (CBT302) deficient in membranebound Ca2+-, Mg2+-ATPase activity also demonstrated the retention of appreciable inorganic phosphate uptake under anaerobic conditions.  相似文献   

13.
The phoS periplasmic protein, implicated in alkaline phosphatase regulation, is shown to be involved in inorganic phosphate (Pi) transport in E. coli. Although phoS? cells dependent upon the PST system for Pi transport can grow in minimal medium with 1 mM Pi as source of phosphorus, the affinity of these cells for Pi is greatly reduced; Km = 18 μM compared with Km = 0.4 μM for phoS+ cells. phoS? cells dependent upon the PST Pi transport system acquire the ability to accumulate Asi from the medium in contrast to phoS+ cells which exclude this toxic anion. It would appear that the periplasmic phoS protein is not essential for Pi accumulation but is involved in maintaining the specificity of the PST Pi transport system.  相似文献   

14.
Calmodulin-like activity in the soluble fraction of Escherichia coli   总被引:8,自引:0,他引:8  
A heat-stable factor with properties similar to those of calmodulin was found in the fraction containing Ca2+-dependent cyclic AMP phosphodiesterase of Escherichiacoli. The factor activated such enzymes as cyclic nucleotide phosphodiesterase of bovine brain, (Ca2+,Mg2+)ATPase of human erythrocyte menbrane and myosin light chain kinase of rabbit myometrium in a Ca2+-dependent fashion with an apparent Ka of 5 × 10?5M. The factor and brain calmodulin had no effect on the phosphodiesterase of E.coli. It may be concluded that calmodulin or a calmodulin-like protein occurs in prokaryotes.  相似文献   

15.
The sarcolemmal membranes isolated from rat skeletal muscle are capable of incorporating 32P from [γ?32P]ATP. The membrane protein phosphorylation requires Mg2+. Cyclic AMP, cyclic GMP and their dibutyrul derivatives showed no marked effect on sarcolemmal phosphorylation.The Mg2+-dependent 32P labeling was significantly enhanced by Na+. The rate of Na+ -stimulated 32P incorporation was quite rapid reaching steady state levels within 5 s at 0 °C. K+ reduced the Na+ -stimulated 32P-incorporation but enhanced the 32Pi release. This inhibitory effect of K+ on Na+ -stimulated 32P incorporation was prevented by the cardiac glycoside, ouabain.The Na+ -dependent 32P labeling showed substrate dependency and the Na+ site was saturable. The apparent Km for ATP was 2 · 10?5 M. The optimum pH for 32P labeling was between 7 and 8.Na+ -dependent membrane phosphorylation showed a direct relationship with the (Na+ + K+ATPase activity. The high turnover rate of 32P intermediate (12 000 min ?1) suggested its functional significance in the overall transport ATPase reaction sequence.The predominate portion (> 90%) of the phosphorylated membrane complex was sensitive to acidified hydroxylamine and to alkaline pH suggesting an acylphosphate nature of the phosphoprotein.Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that 32P incorporation occurred predominately into a 108 000 dalton subunit which is a major protein component of sarcolemmal membranes. A very low level of 32P incorporation was also observed into a 25 000 dalton subunit and Ca2+ slightly enhanced the phosphorylation of this component.The size (Mr 108 000) and some properties of the sarcolemmal phosphoprotein are closely similar to other (Na+ + K+ATPase preparations reported so far.  相似文献   

16.
L(+)-threo-chloramphenicol induces reversion of His?Salmonella typhimurium strains TA100 and TA1535 in the conventional Ames' assay without microsomal activation. Any mutagenicity of D(?)-threo-chloramphenicol was masked by toxicity. Similarly, a sensitive fluctuation test showed mutagenesis with L(+)-threo-chloramphenicol at concentrations of 0.5 μM and above but the D(?) isomer proved to be toxic even at these low levels. The L(+) isomer caused single strand breaks in the DNA of Escherichia coliBr and Salmonella typhimurium strains TA1535, TA100 and TA1976. The D(?) isomer caused breaks in Escherichia coliBr and Salmonella typhimurium TA1976 although it was less effective and it did not produce DNA breaks in TA1535 or TA100.  相似文献   

17.
Author index     
The ionic influence and ouabain sensitivity of lymphocyte Mg2+-ATPase and Mg2+-(Na+ + K+)-activated ATPase were studied in intact cells, microsomal fraction and isolated plasma membranes. The active site of 5′-nucleotidase and Mg2+-ATPase seemed to be localized on the external side of the plasma membrane whereas the ATP binding site of (Na+ + K+)-ATPase was located inside the membrane.Concanavalin A induced an early stimulation of Mg2+-ATPase and (Na+ + K+)-ATPase both on intact cells and purified plasma membranes. In contrast, 5′-nucleotidase activity was not affected by the mitogen. Although the thymocyte Mg2+-ATPase activity was 3–5 times lower than in spleen lymphocytes, it was much more stimulated in the former cells (about 40 versus 20 %). (Na+ + K+)-ATPase activity was undetectable in thymocytes. However, in spleen lymphocytes (Na+ + K+)-ATPase activity can be detected and was 30 % increased by concanavalin A. Several aspects of this enzymic stimulation had also characteristic features of blast transformation induced by concanavalin A, suggesting a possible role of these enzymes, especially Mg2+-ATPase, in lymphocyte stimulation.  相似文献   

18.
Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases.   总被引:15,自引:0,他引:15  
Vanadate is a potent inhibitor of the Ca2+-ATPase activity of sarcoplasmic reticulum in the presence of A-23187. The purified enzyme is sensitive to vanadate even in the absence of the ionophore. Ca2+ and norepinephrine protect the enzyme against inhibition of vanadate. The nonspecificity of vanadate is emphasized by the finding of inhibition of several other ATPases including the Ca2+Mg2+-ATPases of the ascites and human red cell plasma membranes, Mg2+-ATPase of the ascites plasma membrane, and the K+-ATPases of E.coli and hog gastric mucosal cell membranes. The ascites plasma membrane Ca2+-ATPase (an ecto ATPase) and mitochondrial ATPase are not inhibited by vanadate.  相似文献   

19.
The natural affinity of various bacterial glycopeptides and lipopolysaccharides for mammalian cell membranes was estimated quantitatively by comparison with the adsorption of lipopolysaccharide from Escherichia coli NCTC 8623 to erythrocytes, thymocytes, bone marrow cells, spleen cells, peritoneal lymphocytes and macrophages. Immunopotentiating activity was estimated by measuring the ability of the bacterial fractions to stimulate a humoral response to ovalbumin in HAM/1CR mice. When the affinity for mammalian cell membranes was compared with the stimulation of the antibody response, it was found that a negative correlation for peritoneal macrophages (rs=?0.94, P<0.0005) and a positive correlation for peritoneal lymphocytes (rs=+0.97,P<0.0005) and spleen cells (rs=+0.76,P<0.005) existed.  相似文献   

20.
During K+ depletion of a mutant of Escherichiacoli which cannot concentrate this cation, protein synthesis is inhibited but RNA formation continues. The RNA produced during K+ depletion was analyzed by gel electrophoresis. It was found that 4S, 5S and 23S RNA were synthesized by K+-depleted cells whether uninfected or infected with phage T4. In addition, an RNA species moving close to 16S (presumably 17S) and material of about 6–10S were made during K+ depletion. These species of RNA were not evident in growing cells. Methylation of RNA is severely inhibited during K+ depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号