首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline features of cellulose microfibrils in the cell walls of Glaucocystis (Glaucophyta) were studied by combined spectroscopy and diffraction techniques, and the results were compared with those of Oocystis (Chlorophyta). Although these algae are grouped into two different classes, by the composition of their chloroplasts for instance, their cell walls are quite similar in size and morphology. The most striking features of their cellulose crystallites are that they have the highest cellulose Iα contents reported to date. In particular, the Iα fraction of cellulose from Glaucocystis was found to be as high as 90% from 13C NMR analysis. The mode of preferential orientation of cellulose crystallites in their cell walls is also interesting; equatorial 0.53-nm lattice planes were oriented parallel to the cell surface in the case of Glaucocystis, while the 0.62-nm planes were parallel to the Oocystis cell surface. Such a structural variation provides another link to the evolution of cellulose structure, biosynthesis, and its biocrystallization mechanism.  相似文献   

2.
U. P. Agarwal  R. H. Atalla 《Planta》1986,169(3):325-332
Native-state organization and distribution of cell-wall components in the secondary wall of woody tissue from P. mariana (Black Spruce) have been investigated using polarized Raman microspectroscopy. Evidence for orientation is detected through Raman intensity variations resulting from rotations of the exciting electric vector with respect to cell-wall geometry. Spectral features associated with cellulose and lignin were studied. The changes in cellulose bands indicate that the pyranose rings of the anhydroglucose repeat units are in planes perpendicular to the cross section, while methine C–H bonds are in planes parallel to the cross section. Changes in bands associated with lignin indicate that the aromatic rings of the phenyl-propane units are most often in the plane of the cell-wall surface. However, regions where lignin orientation departs from this pattern also occur. These results represent direct evidence of molecular organization with respect to cellular morphological features in woody tissue, and indicate that cell-wall components are more highly organized than had been recognized. Studies carried out in order to establish the usefulness and sensitivity of the Raman technique to differences of composition within the cell walls provide evidence of variations in the distribution of cellulose and lignin. Such compositional differences were more prominent between the walls of different cells than within a particular cell wall.  相似文献   

3.
Solid-state CP/MAS 13C NMR spectroscopy was used to determine the effects of three different sequential extraction procedures, used to remove non-cellulosic polysaccharides, on the molecular ordering of cellulose in a cell-wall preparation containing mostly primary cell walls obtained from the leaves of the model dicotyledon, Arabidopsis thaliana. The extractions were 50 mM trans-1,2-diaminocyclohexane N,N,N',N'-tetraacetic acid (CDTA) and 50 mM sodium carbonate (giving Residue 1); 50 mM CDTA, 50 mM sodium carbonate and 1 M KOH (giving Residue 2); and 50 mM CDTA, 50 mM sodium carbonate and 4 M KOH (giving Residue 3). The molecular ordering of cellulose in Residue 1 was similar to that in unextracted walls: the cellulose was almost all crystalline, with 43% of molecules contained in crystallite interiors and similar proportions of the triclinic (I(alpha)) and monoclinic (I(beta)) crystal forms. Residue 2 was partly decrystallized and the remaining crystallites were mostly in the I(beta) form. Residue 3 was a mixture of cellulose II, cellulose I and amorphous cellulose. The presence of signals at 100.0 and 102.3 ppm in the spectra of Residues 1 and 2, but not of unextracted cell walls, suggested that the extractions giving these residues caused some of the non-cellulosic polysaccharides, possibly xyloglucans and galactoglucomannans, to become relatively well ordered, for example through interactions with cellulose crystallite surfaces.  相似文献   

4.
Cell wall structure and deposition in Glaucocystis   总被引:4,自引:2,他引:2       下载免费PDF全文
Events leading to cell wall formation in the ellipsoidal unicellular alga Glaucocystis are described. The wall is deposited in three phases: (a) a thin nonfibrillar layer, (b) cellulosic microfibrils arranged in helically crossed polylamellate fashion, and (c) matrix substances. At poles of cells, microfibrils do not terminate but pass around three equilaterally arranged points, resulting in microfibril continuity between the twelve helically wound wall layers. These findings were demonstrated in walls of both mother cells and freeze-fractured growing cells, and models of the wall structure are presented. Cellular extension results in spreading apart, and in rupture, of microfibrils. On freeze-fractured plasma membranes, there were 35 nm X 550 nm structures associated with the ends of microfibrils. These are interpreted as representing microfibril-synthesizing centers (terminal complexes) in transit upon the membrane. These terminal complexes are localized in a zone, or zones. The plasma membrane is subtended by flattened sacs, termed shields, which become cross-linked to the plasma membrane after completion of wall deposition. During wall deposition, microtubules lie beneath the shields, and polarized filaments lie between shields and plasma membrane. The significance of these findings in relation to understanding the process of cellulose deposition is discussed, and comparisons are made with the alga Oocystis.  相似文献   

5.
- Model composites, produced using cellulose from stationary cultures of the bacterium Gluconoacetobacter xylinus and tamarind xyloglucan, were examined by wide-angle X-ray scattering (WAXS) and CP/MAS solid-state (13)C NMR spectroscopy. The dominant crystallite allomorph of cellulose produced in culture media with or without xyloglucan was cellulose I(alpha) (triclinic). The presence of xyloglucan in the culture medium reduced the cross-section dimensions of the cellulose crystallites, but did not affect the crystallite allomorph. However, when the composites were refluxed in buffer, the proportion of cellulose I(beta) allomorph increased relative to that of cellulose I(alpha). In contrast, cellulose I(alpha) remained the dominant form when cellulose, produced in the absence of xyloglucan, was then heated in the buffer. Hence the presence of xyloglucan has a profound effect on the formation of the cellulose crystallites by G. xylinus.  相似文献   

6.
Oocystis polymorpha and possibly other algae which shed their parent-cell walls during reproduction appear to be suitable organisms for cell wall research in that the cell walls can be readily collected from the culture medium. Electron micrographs of sectioned isolated cell walls, of the parent-cell walls, and of the daughter cells appear to be identical, suggesting that the isolated cell walls are representative of those of the intact cell. Chemically, the cell walls of Oocystis polymorpha resemble the cell walls of Cyanidium and the chemically resistant cuticle fraction of Cladophora and Porphyra in their high nitrogen and low sugar and lipid contents. Pink carotenoids are the major lipid components of the cell walls.  相似文献   

7.
Gibberellin-induced formation of tension wood in angiosperm trees   总被引:1,自引:0,他引:1  
Funada R  Miura T  Shimizu Y  Kinase T  Nakaba S  Kubo T  Sano Y 《Planta》2008,227(6):1409-1414
After gibberellin had been applied to the vertical stems of four species of angiosperm trees for approximately 2 months, we observed eccentric radial growth that was due to the enhanced growth rings on the sides of stems to which gibberellin had been applied. Moreover, the application of gibberellin resulted in the formation of wood fibers in which the thickness of inner layers of cell walls was enhanced. These thickened inner layers of cell walls were unlignified or only slightly lignified. In addition, cellulose microfibrils on the innermost surface of these thickened inner layers of cell walls were oriented parallel or nearly parallel to the longitudinal axis of the fibers. Such thickened inner layers of cell walls had features similar to those of gelatinous layers in the wood fibers of tension wood, which are referred to as gelatinous fibers. Our anatomical and histochemical investigations indicate that the application of gibberellin can induce the formation of tension wood on vertical stems of angiosperm trees in the absence of gravitational stimulus.  相似文献   

8.
Atomic force microscopy of microfibrils in primary cell walls   总被引:6,自引:0,他引:6  
Davies LM  Harris PJ 《Planta》2003,217(2):283-289
Examination of angiosperm primary cell walls by transmission electron microscopy shows that they contain microfibrils that probably consist of cellulose microfibrils surrounded by associated non-cellulosic polysaccharides. Previous studies using solid-state (13)C NMR spectroscopy have shown that the cellulose is all crystalline with crystallites of cross-sectional dimensions of 2-3 nm. However, it is not known if each microfibril contains only one, or more than one crystallite because there is no agreement about the dimensions of the microfibrils. Partially hydrated primary cell walls isolated from onion ( Allium cepa L.) and Arabidopsis thaliana (L.) Heynh. were examined by atomic force microscopy and the microfibril diameters determined. The cell walls of both species contained tightly interwoven microfibrils of uniform diameter: 4.4+/-0.13 nm in the onion and 5.8+/-0.17 nm in A. thaliana. The effect was also examined of extracting the A. thaliana cell walls to remove pectic polysaccharides. The microfibrils in the extracted cell walls of A. thaliana were significantly narrower (3.2+/-0.13 nm) than those in untreated walls. The results are consistent with the microfibrils containing only one cellulose crystallite.  相似文献   

9.
Igarashi K  Wada M  Hori R  Samejima M 《The FEBS journal》2006,273(13):2869-2878
The enzymatic kinetics of glycoside hydrolase family 7 cellobiohydrolase (Cel7A) towards highly crystalline celluloses at the solid-liquid interface was evaluated by applying the novel concept of surface density (rho) of the enzyme, which is defined as the amount of adsorbed enzyme divided by the maximum amount of adsorbed enzyme. When the adsorption levels of Trichoderma viride Cel7A on cellulose I(alpha) from Cladophora and cellulose I(beta) from Halocynthia were compared, the maximum adsorption of the enzyme on cellulose I(beta) was approximately 1.5 times higher than that on cellulose I(alpha), although the rate of cellobiose production from cellulose I(beta) was lower than that from cellulose I(alpha). This indicates that the specific activity (k) of Cel7A adsorbed on cellulose I(alpha) is higher than that of Cel7A adsorbed on cellulose I(beta). When k was plotted versus rho, a dramatic decrease of the specific activity was observed with the increase of surface density (rho-value), suggesting that overcrowding of enzyme molecules on a cellulose surface lowers their activity. An apparent difference of the specific activity was observed between crystalline polymorphs, i.e. the specific activity for cellulose I(alpha) was almost twice that for cellulose I(beta). When cellulose I(alpha) was converted to cellulose I(beta) by hydrothermal treatment, the specific activity of Cel7A decreased and became similar to that of native cellulose I(beta) at the same rho-value. These results indicate that the hydrolytic activity (rate) of bound Cel7A depends on the nature of the crystalline cellulose polymorph, and an analysis that takes surface density into account is an effective means to evaluate cellulase kinetics at a solid-liquid interface.  相似文献   

10.
Summary Calcofluor White ST is a fluorescent brightener that has previously been shown to alter cellulose ribbon assembly in the bacteriumAcetobacter xylinum. In this report, we demonstrate that Calcofluor also disrupts cell wall assembly in the eukaryotic algaOocystis apiculata. When observed with polarization microscopy, walls altered by Calcofluor show reduced birefringence relative to controls. Electron microscopy has shown that these altered walls contain regions which consist primarily of amorphous material and which generally lack organized microfibrils. We propose that wall alteration occurs because Calcofluor binds with the glucan chains polymerized by the cellulose synthesizing enzymes as they are produced. As a consequence, the glucan chains are prevented from co-crystallizing to form microfibrils. Synthesis of normal walls resumes when Calcofluor is removed, which is consistent with our proposal that Calcofluor acts by direct physical interaction with newly synthesized wall components.Several types of fluorescent patterns at the cell wall/plasmalemma interface have also been observed following Calcofluor treatment. Fluorescent spots, striations; helical bands, and lens-shaped thickenings have been documented. Each of these patterns may be the result of the interaction of Calcofluor with cellulose at different spatial or temporal levels or from varying concentrations of the brightener itself. Helical bands and lens-shaped thickenings also have been examined with the electron microscope. Like other regions of wall alteration, they are found to contain primarily amorphous material. Finally, we note that cells with severely disrupted walls are unable to complete their normal life cycle.  相似文献   

11.
The microfibril angle (MFA) distribution and the size of cellulose crystallites in isolated double cell walls of Norway spruce (Picea abies [L.] Karst.) tracheids were determined by synchrotron X-ray microdiffraction using the reflections 200 and 004. Samples were 25 μm thick longitudinal sections of earlywood from annual rings 6–18 of several stems. The asymmetric MFA distributions extended from ?20° to 90°. The mean MFA of tangential cell walls decreased from an average of 24° into 19° from the pith to the bark. The mode of the MFA distribution was about 10° smaller than the mean MFA. The standard deviation of the MFA distribution varied between 18° and 25°. The mean MFA and the mode of the MFA distribution were larger in radial than in tangential cell walls. MFA distributions of mature wood samples exhibited a separate small peak at around 90°. The average width and length of cellulose crystallites varied between 28.9–30.9 Å and 192–284 Å, respectively. Both increased slightly as a function of annual ring number from the pith up to the 15th annual ring. An irrigation–fertilisation treatment of some of the stems resulted in longer cellulose crystallites compared to the untreated stems.  相似文献   

12.
Swelling behaviors of cellulose I(alpha) and III(I) crystals have been studied using molecular dynamics simulations of the solvated finite-crystal models. The typical crystal models consisted of 48 x 10-mer chains. For the cellulose I(alpha) crystal, models consisting of different numbers of chains and chain lengths were also studied. The structural features of the swollen crystal models, including the cellulose I(beta) crystal model reported previously, were compared. A distinct right-handed twist was observed for models of the native cellulose crystals (cellulose I(alpha) and I(beta)), with a greater amount of twisting observed for the I(alpha) crystal model. Although the amount of twist decreased with increasing dimensions of the cellulose I(alpha) crystal model, the relative changes in twist angle suggest that considerable twist would arise in a crystal model of the actual dimensions. In contrast to the swelling behavior of crystal models of the native cellulose, the cellulose III(I) crystal model exhibited local, gradual disordering at the corner of the reducing end. Comparison of the lattice energies indicated that the cellulose chains of the I(beta) crystal were packed in the most stable fashion, whereas those of the I(alpha) and III(I) crystals were in a metastable state, which is consistent with the crystallization behaviors observed. Upon heating of the native cellulose crystal models, the chain sheets of the I(alpha) model showed a continuous increase in twist angle, suggesting weaker intersheet interactions in this model. The swollen crystal models of cellulose I(alpha) and III(I) reproduce well the representative structural features observed in the corresponding crystal structures. The crystal model twist thus characterizes the swelling behavior of the native cellulose crystal models, which seems to be related to the insolubility of the crystals.  相似文献   

13.
Cao Y  Shen D  Lu Y  Huang Y 《Annals of botany》2006,97(6):1091-1094
BACKGROUND AND AIMS: Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS: Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS: The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS: The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.  相似文献   

14.
The ultrastructure of the skeleton is described in six species of lichenoporid cyclostome bryozoans using field emission SEM. Both interior walls (vertical, interzooidal walls, and brood chamber roofs and floors) and exterior walls (basal walls) are initially secreted as tiny wedge-shaped crystallites without a strong preferred orientation. These are seeded directly onto pre-existing crystallites in the case of interior walls, but onto the organic cuticle in exterior walls, the bases of the crystallites forming a tightly packed mosaic against the cuticle. With growth the wedges become longer, broader and relatively flatter, developing into platey crystallites. These crystallites grow predominantly distally (i.e. parallel to wall growth direction) and are closely imbricated in a foliated fabric. Local disruptions to this pattern occur, especially in association with crystallite division along “divergent zones”. The pattern also breaks down in old walls where crystallite growing edges become less evident and imbrication is poorly developed. Although conforming to this general model, some differences exist between species of lichenoporids, and in the patterns found in different parts of the skeleton (e.g. apertural spines). Lichenoporid ultrastructure differs from that of both cinctiporid and hornerid cyclostomes: notably, lichenoporids lack the layer of transverse fibres found in cinctiporids, and their predominant distal growth direction of crystallites contrasts with the proximal direction found in hornerids.  相似文献   

15.
Summary Serial thin sectioning for electron microscopy was carried out on the cortical cytoplasm of surface cells of the apical dome ofVinca minor. The cellulose reinforcement pattern in the outer epidermal walls forming this surface is known to correlate well with the decussate phyllotaxis pattern. The purpose of this study was to determine the location of microtubules immediately under these epidermal walls as a first step toward finding out how the cellulose pattern arises. First, correspondence between the patterns of microtubules and cellulose was checked. Second, the role of potential orienting cues for the alignment of microtubule arrays in specific cells was evaluated.Microtubule arrays which were well or moderately ordered (70% of the total interphase cells) generally had alignment parallel to the adjacent leaf base, as has been seen for cellulose. The aligned features or cues potentially correlating with a given array were: (1) orientation and length of the previous anticlinal cross-wall, (2) alignment of microtubules in adjacent cells, and (3) direction of inferred stretch, parallel to the nearby leaf bases. All three features were found to agree with the microtubule alignment in 17 of 34 cells with ordered arrays. At least two features agreed in 33 of the 34 cases. All 34 cells with ordered arrays had at least one feature parallel to the array. Random association between microtubule orientation and these features would lead to such correlations less than 0.01% of the time. Thirty percent of the interphase cells showed no obvious order. Most of these cells were located in the central linear corridor region of the apex. The unordered cells were more likely than the ordered cells to have more than one orientation specified by the potential cues; i.e., no single orientation parallel to all of the cues existed. This indicates that uniformity of the orientation cues may be as important as their direction.  相似文献   

16.
The 2,2,6,6-tetramethylpiperidine-1-oxy radial (TEMPO)-mediated oxidation was applied to aqueous slurries of cotton linters. The water-insoluble fibrous fractions thus obtained in the yields of more than 78% were characterized by solid-state 13C-NMR, X-ray diffraction and scanning electron microscopic analyses for evaluation of distribution of carboxylate groups formed in the TEMPO-oxidized celluloses. The patterns of solid-state 13C-NMR spectra revealed that the oxidation occurred at the C6 primary hydroxyl groups of cellulose. X-ray diffraction and scanning electron microscopic analyses showed that such C6 oxidation took place at the surfaces of cellulose I crystallites without any oxidation at the C6 of inside cellulose I crystallites. Thus, carboxylate and aldehyde groups introduced into the TEMPO-oxidized celluloses are densely present on the surfaces of cellulose I crystallites. In addition, the obtained results revealed that the shoulder signal due to non-crystalline C6 carbons at about 63 ppm in solid-state 13C-NMR spectra of native celluloses is ascribed to those of surfaces of cellulose I crystallites or those of cellulose microfibrils.  相似文献   

17.
Arrangements of cortical microtubules (MTs) and of cellulose microfibrils at the surface of the vegetative shoot apex ofVinca major L. were examined by immunofluorescence microscopy and polarizing microscopy, respectively. Cortical MTs adjacent to the outermost walls of the apex were arranged more or less randomly in individual cells: especially in cells in the central region of the apex the arrangement was almost completely random. However, in the peripheral region MTs tended to show parallel alignment in individual cells, and an overall pattern that was roughly concentric around the apical dome was discerned. Observations of birefringence of cell walls indicated that cellulose microfibrils in the peripheral region of the apex were also arranged in a pattern which was roughly concentric around the apical dome. These patterns of arrangements of MTs and microfibrils are understood to be perpendicular to the radial cell files observed in the peripheral region of the apex, and can be related to the radial expansion of the surface of the apex.  相似文献   

18.
Fully bleached softwood kraft pulps were hydrolyzed with cellulase (1,4-(1,3:1,4)-beta-D-glucan 4-glucano-hydrolase, EC 3.2.1.4) from Trichoderma reesei. Supra-molecular structural features of cellulose during enzymatic hydrolysis were examined by using CP/MAS 13C NMR spectra in combination with line-fitting analysis. Different types of cellulose allomorphs (cellulose I(alpha), cellulose I(beta), para-crystalline) and amorphous regions were hydrolyzed to a different extent by the enzyme used. Also observed was a rapid initial phase for hydrolysis of regions followed by a slow hydrolysis phase. Cellulose I(alpha), para-crystalline, and non-crystalline regions of cellulose are more susceptible to enzymatic hydrolysis than cellulose I(beta) during the initial phase. After the initial phase, all the regions are then similarly susceptible to enzymatic hydrolysis.  相似文献   

19.
Fuller , Melvin S. (Brown U. Providence, R. I.), and Isaac Barshad . Chitin and cellulose in the cell walls of Rhizidiomyces sp. Amer. Jour. Bot. 47(2): 105-109. Illus. 1960.–Chemically isolated cell wall preparations of the aquatic Phycomycete, Rhizidiomyces sp., were analyzed by means of X-rays. The resulting diffraction patterns had maxima corresponding with known values for chitin and mercerized cellulose. The findings in this study are discussed with respect to Von Wettstein's hypothesis that the aquatic Phycomycetes can be separated into groups on the basis of whether their cell walls contain chitin or cellulose.  相似文献   

20.
The organization of the surface of cellulose is important in cell structure, as well as in industrial processing and modification. Using atomic force microscopy, we show that the I(alpha) phase of native cellulose first proposed in 1984 and subsequently characterized by a triclinic unit cell exists over large areas of the surface of microcrystals from Valonia, one of the most highly crystalline celluloses. There is startling agreement between the observed structure and crystal models, and it is possible to identify the specific crystal face being imaged. The near-atomic resolution images also offer an insight into structural reconstructions at the surface compared to the interior. We are able to assign features in the images to particular side groups attached to the glucose ring and find indications of subtle modifications of the position of surface hydroxyls due to changes in hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号