首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Cyclic parthenogenesis is the ancestral mode of reproduction in the cladoceran crustacean, Daphnia pulex, but some populations have made the transition to obligate parthenogenesis and this is the only mode of reproduction known to occur in arctic populations. Melanism and polyploidy are also common in arctic populations of this species. Prior allozyme studies of arctic D. pulex revealed substantial levels of clonal diversity on a regional scale. Clonal groupings based on cluster analysis of allozyme genotypes do not conform to groupings based on the presence/absence of melanin or on ploidy level. In order to further elucidate genetic relationships among arctic D. pulex clones, mitochondrial DNA (mtDNA) variation was examined in 31 populations from two Canadian high-arctic sites. The data were also compared to a previous study of mtDNA variation in populations from a Canadian low-arctic site. Cladistic analysis of restriction site variation of the entire mitochondrial genome and nucleotide sequence variation of the mitochondrial control region was used to construct genetic relationships among mitochondrial genotypes. Three distinct mitochondrial lineages were detected. One lineage was associated with diploid, nonmelanic clones and is the same as the lineage that is found in temperate populations of D. pulex. The other two lineages (A & B) were associated with polyploid, melanic clones. Sequence divergence between the A and B lineages was 2.4%. Sequence divergence between D. pulex and either of these two lineages exceeded 3%. It is suggested that the melanic, polyploid clones are hybrids between males of D. pulex (and/or a closely related congener, D. pulicaria) and females of either of two ancestral melanic species that have mitochondrial lineages A and B. Geographic patterns of mitochondrial diversity in ‘melanic’ lineage B support the hypothesis of an high-arctic refuge for the ancestral species during the last glacial period.  相似文献   

2.
The cyprinid fishes, Notropis cornutus and N. chrysocephalus, hybridize in a long, narrow zone in the midwestern United States. To quantify the extent of introgression of genetic markers outside of this zone, samples were collected along transects starting near the region of contact (as defined by morphological characters), followed by samples progressively more distant. Diagnostic allozymic and mitochondrial DNA (mtDNA) restriction site markers were used to estimate the extent of introgression outside of the zone, while polymorphic allozyme and mtDNA markers were used to evaluate the potential for gene flow among populations within transects. Analysis of populations from the northern transect provided evidence for differentiation of populations for some of the markers; however, on average, enough gene flow has occurred to overcome substantial differentiation. Introgressed mtDNA and allozyme haplotypes were rare and found only in the population closest to the contact zone. The rarity of introgressed alleles in the more northern populations is consistent with the recent origin of these populations after the Wisconsin glaciation (less than 12,000 years bp) and/or selection maintaining the northern boundary of the contact zone. Analysis of populations from the southern transect revealed evidence for population subdivision but no evidence for introgression at the diagnostic allozyme loci; however, nearly all individuals from this transect possessed introgressed mtDNA haplotypes, with samples furthest from the contact zone exhibiting the highest frequencies of introgression. Patterns of variation for one of the polymorphic allozyme markers (Est-A) and introgressed mtDNAs were highly correlated, suggesting that allozymic heterogeneity at this locus is also the result of introgression. The most likely explanation for these data is that these introgressed haplotypes are indicators of a more southern position of the contact zone during the Pleistocene, with the contact zone shifting northward with the recession of the glacial front. Such movement implicates selection in the maintenance of distributional limits of these species, and hence, the width and position of the contact zone.  相似文献   

3.
Male genital morphology, allozyme allele frequencies and mtDNA sequence variation were surveyed in the butterfly species Lycaeides idas and L. melissa from across much of their range in North America. Despite clear differences in male genital morphology, wing colour patterns and habitat characteristics, genetic variation was not taxonomically or geographically structured and the species were not identifiable by either genetic data set. Genetic distances (Nei's D=0.002–0.078, calculated from allozyme data) between all populations of both species were within the range commonly observed for conspecific populations of other butterflies. The most frequent mtDNA haplotype was present in individuals of both species in populations from southern California to Wisconsin. We conclude that speciation has probably happened recently and the lack of genetic differentiation between the species is the product of either (1) recent or ongoing gene flow at neutral loci, and/or (2) an insufficiency of time for lineage sorting. The evolution of male genital morphology, wing colour patterns and ecological characteristics has proceeded more rapidly than allozyme or mtDNA evolution.  相似文献   

4.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   

5.
A comparison of allozyme and mtDNA frequencies was used for insight into a situation in the Pecos River, Texas where contact between the endemic pupfish (Cyprinodon pecosensis) and an introduced congener (C. variegatus) has resulted in rapid, geographically extensive genetic introgression. Temporal changes in mean frequencies of diagnostic allozyme markers indicate that the clinal pattern of introduced genetic material (Echelle and Connor 1989) is slowly decreasing in amplitude. Significant rank concordance in diagnostic allele frequencies among sites and across sampling years indicates directional influences upon temporal allele frequency change. These observations are consistent with the theory of gene flow in neutral clines. Levels of introgression indicated by each of four allozyme loci and mtDNA were roughly equivalent. The early history of the hybrid swarm is explained by genetic swamping, possibly mediated by selection for C. variegatus or C. variegatus × C. pecosensis, at a time when the normally abundant endemic species had been catastrophically depleted. High frequencies of an introduced GPI-A allele in all samples of intergrades suggests that the introduced genome originated with a single founding event.  相似文献   

6.
Growing evidence indicates that males may be more discriminating of mating partners than often has been assumed. In the North American Ocoee dusky salamander, Desmognathus ocoee (Plethodontidae: Desmognathinae), sexual incompatibility among conspecific populations is high in encounters staged in the laboratory, at least in part because males fail to recognize ‘other’ females as appropriate targets for courtship. I used Y-mazes to test the hypothesis that males of D. ocoee discriminate between substrate-borne chemical cues produced by ‘own’ (homotypic) and ‘other’ (heterotypic) females. Males of four populations discriminated in favor of substrates soiled by homotypic females over clean (control) substrates (expt 1), suggesting that females produce chemical cues of sociosexual significance to males. Furthermore, males from these populations discriminated in favor of substrates soiled by homotypic females vs. substrates soiled by heterotypic females (expt 2), both conspecific and heterospecific (D. carolinensis and D. orestes). Thus, differences among populations and species in female chemical cues appear to affect the chemotactic responses of males. I suggest that, together with differences in behavioral signals and responses exhibited during courtship, differences in female chemical cues likely contribute to sexual incompatibility among populations and taxa of desmognathine salamanders.  相似文献   

7.
Abstract Have the warm tropical waters and currents of the southern Gulf of California, Mexico (also known as the Sea of Cortez), formed a barrier to gene flow, resulting in disjunct populations in the upper gulf that are isolated from the outer Pacific Coast? Phylogeographic and genetic divergences of the spotted sand bass, Paralabrax maculatofasciatus, from three Gulf of California and two outer Pacific coastal locations were tested using mitochondrial DNA (mtDNA) control region sequences. Sequence data from two congeners that are sympatrically distributed along the outer Pacific Coast, the barred sand bass, P. nebulifer, and the kelp bass, P. clathratus, were used to gauge the levels of genetic divergences. Differences among the three species and between the northern gulf and outer Pacific coastal populations of P. maculatofasciatus also were analyzed using 40 allozymic presumptive gene loci. Allozyme and mtDNA analyses each revealed many fixed differences among the species. Three significant allozymic frequency differences and two fixed mtDNA substitutions differentiated the gulf and outer Pacific coastal populations of P. maculatofasciatus. Three unique mtDNA haplotypes and three unique allozyme alleles were identified from the outer Pacific coastal population. The gulf sites contained four unique mtDNA haplotypes and six unique allozyme alleles. Partitioning of the mtDNA variation revealed that 72% of the variance occurred between the gulf and outer Pacific Coast, 20% between sampling sites in the two regions, and 8% within the sites. There appears to be little gene flow across the waters of the southern Baja Penninsula, producing divergence estimated as 120,000 to 600,000 years between the outer Pacific coastal and the Gulf of California populations. This separation level may date to a hypothesized seaway closure near La Paz, Mexico, during the mid‐Pleistocene, and characterizes other fish populations. A second pattern of deeper allopatric species‐level divergences in some other fishes may date to a Pliocene closure of a mid‐Baja Penninsular seaway. Significant differences also were discerned in P. maculatofasciatus between the San Diego and central Baja California coastal sites and between the upper/central and the lower gulf locations. Variation between locations in the two regions may be indicative of larval retention and low adult migration, which needs to be tested further.  相似文献   

8.
Samples of Luxilus cornutus, Luxilus chrysocephalus, and their hybrids were collected along hypothesized routes of dispersal from Pleistocene refugia to examine the significance of geographic variation in patterns of introgression between these species. Patterns of allozyme and mitochondrial DNA (mtDNA) variation were generally consistent with those from previous studies. Tests of Hardy-Weinberg equilibrium revealed significant deficiencies of heterozygotes in all samples, indicating some form of reproductive isolation. Mitochondrial DNAs of each species were not equally represented in F1 hybrids; however, this bias was eliminated when the two largest samples were excluded from the analysis. Backcross hybrids exhibited biased mtDNA introgression, as samples from Lake Erie (eastern) and Lake Michigan (western) drainages showed significant excesses of mtDNAs from L. chrysocephalus and L. cornutus, respectively, relative to frequencies of diagnostic allozyme markers. The extent and direction of allozyme and mtDNA introgression was quantified by calculating isolation index values from morphologically “pure” individuals of each species from each locality. Analysis of variance of these measures identified limited introgression of allozyme variants with no geographic pattern, but significant differences in direction of mtDNA introgression between drainages (i.e., postglacial dispersal route). Association between patterns of mtDNA introgression and dispersal route across the latitudinal width of the contact zone is best explained by genetic divergence during past isolation of ancestral populations from these drainages. These results identify a significant role for historical effects in the evolution of reproductive isolation and the process of speciation.  相似文献   

9.
Genetic relationships, population subdivision and genetic diversity were estimated from mtDNA and allozyme data for two subspecies of tiger salamander, one of which is obligately metamorphic and the other polymorphic for paedomorphosis (larval reproduction). Far greater genetic differentiation exists between subspecies than within subspecies, suggesting that the subspecies have evolved in allopatry. Values of Fst calculated from both mtDNA and allozymes were greater than 0.400 for each subspecies. Significant population subdivision was detected even on a microgeographic scale. This extensive population subdivision indicates that populations can respond to extremely localized selection pressures. In the case of paedomorphosis, populations in permanent water should evolve paedomorphosis as long as the appropriate genes exist. For both mtDNA and allozymes, comparisons of population structure within the polymorphic subspecies and between polymorphic and metamorphic subspecies reveal no discernible effects of paedomorphosis. However, a comparison of paedomorphic and metamorphic populations of the polymorphic subspecies showed significantly higher mtDNA diversity in paedomorphic populations. The discrepancy between the allozyme and mtDNA results may be due to the lower effective population size of mtDNA compared to autosomal genes.  相似文献   

10.
Paradoxically, an allozyme study of Metepeira “spinipes” (sensu lato) demonstrated extensive gene flow among four populations whose members are nevertheless morphologically and behaviorally distinct. Initially, the authors tentatively concluded that the populations exhibited panmixis and suggested that local environmental effects accounted for the apparent morphological and behavioral differences. However, they later concluded that such differences were too great to be accounted for by the environment alone and that the four populations actually represented three different species. To confirm that the allozyme results were, in fact, artifactual, we reexamined the relationships among these populations by sequencing a portion of the 12S mtDNA ribosomal subunit. In contrast to the allozyme result, our results demonstrate good agreement between patterns of genetic and morphological/behavioral variation. We suggest (1) that the allozyme allele frequencies are homogenized by balancing selection, not gene flow as was previously concluded, and therefore (2) that this study provides another instance in which inferences about population structures from allozyme data are misleading.  相似文献   

11.
Abstract Sugi (Cryptomeria japonica D. Don) is a valuable tree species in Japan. The present natural distribution is limited to small scattered areas in temperate moist regions, and most of these areas are surrounded by vast artificial plantations. We studied natural populations of C. japonica in an effort to determine the amount and distribution of genetic diversity using 12 allozyme markers. The amount of genetic variation within the species is high (HT=0.196) but most is found within populations with little among populations (GST=0.034) despite their isolated distribution. This pattern of genetic diversity is inferred to be the consequence of the following: (1) the distribution of this species in the past was wider and more continuous than it is now; (2) a high rate of gene flow occurs, perhaps including gene flow between natural populations and plantations; and (3) the long lifespan. However, the distribution of allele frequencies at the 6Pg-1 in northern populations on the side near the Sea of Japan is clearly different from those in other populations. This observation is inferred to result from founding events.  相似文献   

12.
Restriction endonuclease analyses were performed on mitochondrial DNAs (mtDNAs) representing unisexual parthenogenetic (cytotypes A, B, and C) and bisexual (cytotypes D and E) populations of Amazonian lizards presently regarded as Cnemidophorus lemniscatus. The results of mtDNA cleavage map comparisons among these C. lemniscatus indicated that (1) there was no cleavage site variation among the unisexuals, (2) mtDNAs from the bisexual cytotypes D and E differed in sequence from one another by about 13%, and (3) mtDNAs from cytotypes A–C differed from those of cytotype D by about 5% and from those of cytotype E by about 13%. Higher resolution restriction fragment size comparisons confirmed the high degree of similarity among the unisexual mtDNAs, but identified 12 cleavage site variants among the 13 cytotype D mtDNAs examined. Both cladistic and phenetic (UPGMA) analyses of the data indicate that the unisexual and cytotype D mtDNAs form a single clade, suggesting that a female of cytotype D was the maternal progenitor of the unisexuals. The similarity among the unisexual mtDNAs and the variability among those of cytotype D suggest that the three unisexual cytotypes arose recently from a common maternal lineage. The mtDNA variability observed among cytotype D individuals has a strong geographic component, suggesting that the unisexuals arose from one or a few geographically proximal populations. The mtDNA comparisons also support the conclusion, based on allozyme comparisons (Sites et al., 1990, this issue), that cytotypes D and E, although presently allocated to C. lemniscatus, are separate species.  相似文献   

13.
The western North American complex of spotted frogs (Rana pretiosa) exhibits isolation-by-distance, genetic subdivision, and speciation in association with its extensive northward range shift in postglacial times. The southern relict populations of R. pretiosa species B existing at high altitudes or in desert springs have been subjected to restricted gene flow, high inbreeding, and bottlenecks to produce significant between-population genetic diversity. The more recently established northern populations, however, show genetic uniformity and isolation-by-distance, as estimated using Slatkin's (1993) statistic M?. Middle latitude populations have higher heterozygosities than populations at either extreme. Fixed differences in allozyme variation separate 21 populations of species B from five populations of R. pretiosa species A found in southwest Washington State and the Cascades Mountains of Oregon. Morphological variation of 20 metric characters among 38 samples, examined using multiple discriminant function analysis, could partially resolve partitioning among populations but specimens from the vicinity of the type series of R. p. pretiosa could not be assigned to either species A or species B. Speciation in these frogs may not be correlated with morphological evolution since comparatively neutral allozyme changes may be established more rapidly than changes in morphology.  相似文献   

14.
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.  相似文献   

15.
The sandbar shark, Carcharhinus plumbeus, is a large, cosmopolitan, coastal species. Females are thought to show philopatry to nursery grounds while males potentially migrate long distances, creating an opportunity for male‐mediated gene flow that may lead to discordance in patterns revealed by mitochondrial DNA (mtDNA) and nuclear markers. While this dynamic has been investigated in elasmobranchs over small spatial scales, it has not been examined at a global level. We examined patterns of historical phylogeography and contemporary gene flow by genotyping 329 individuals from nine locations throughout the species’ range at eight nuclear microsatellite markers and sequencing the complete mtDNA control region. Pairwise comparisons often resulted in fixation indices and divergence estimates of greater magnitude using mtDNA sequence data than microsatellite data. In addition, multiple methods of estimation suggested fewer populations based on microsatellite loci than on mtDNA sequence data. Coalescent analyses suggest divergence and restricted migration among Hawaii, Taiwan, eastern and western Australia using mtDNA sequence data and no divergence and high migration rates, between Taiwan and both Australian sites using microsatellite data. Evidence of secondary contact was detected between several localities and appears to be discreet in time rather than continuous. Collectively, these data suggest complex spatial/temporal relationships between shark populations that may feature pulses of female dispersal and more continuous male‐mediated gene flow.  相似文献   

16.
Bryde’s whales (Balaenoptera brydei) differ from other typical baleen whale species because they are restricted to tropical and warm temperate waters in major oceans, and frequent trans-equatorial movement has been suggested for the species. We tested this hypothesis by analyzing genetic variation at 17 microsatellite loci (N = 508) and 299 bp of mitochondrial DNA (mtDNA) control region sequences (N = 472) in individuals obtained from the western North Pacific, South Pacific, and eastern Indian Ocean. Combined use of microsatellite and mtDNA markers allowed us to distinguish between contemporary gene flow and ancestral polymorphism and to describe sex-specific philopatry. A high level of genetic diversity was found within the samples. Both nuclear and mtDNA markers displayed similar population structure, indicating a lack of sex-specific philopatry. Spatial structuring was detected using both frequency-based population parameters and individual-based Bayesian approaches. Whales in the samples from different oceanic regions came from genetically distinct populations with evidence of limited gene flow. We observed low mtDNA sequence divergence among populations and a lack of concordance between geographic and phylogenetic position of mtDNA haplotypes, suggesting recent separation of populations rather than frequent trans-equatorial and inter-oceanic movement. We conclude that current gene flow between Bryde’s whale populations is low and that effective management actions should treat them as separate entities to ensure continued existence of the species.  相似文献   

17.
Distinguishing between primary and secondary intergradation among differentiated populations, and the relative importance of drift and selection, are persistent problems in evolutionary biology. An historical perspective on population interactions can provide insight into the nature of contacts, and thus help resolve these questions. Continuously distributed populations of Anolis marmoratus from the island of Basse Terre in the Guadeloupean archipelago of the Lesser Antilles show a striking degree of geographic variation in morphology. Initial surveys of mtDNA variation from throughout the Guadeloupean Archipelago revealed one case where levels of sequence difference and phylogenetic relationships of alleles from morphologically differentiated populations from the east coast of Basse Terre were consistent with primary intergradation. In this paper, I examine the genetic population structure of a series of populations spanning this north-south cline in morphological variation to test the hypothesis of primary intergradation. Sequences of the mitochondrial cytochrome-b gene from 50 individuals representing five populations spanning the cline were obtained and fourteen unique haplotypes (differing by 2% or less) were detected. Patterns of nucleotide substitution among haplotypes do not deviate from neutral expectation indicating no effect of selection at the level of mtDNA sequences. Estimates of population structure and gene flow were made using both summary statistics for nucleotide diversity (Nat) and cladistic methods. The results are sensitive to the choice of gene flow model, and this is discussed in detail. Mitochondrial variation in the northern populations may not be at equilibrium, and the phylogeny of alleles is consistent with a recent increase in effective population size. Estimates of nucleotide diversity, gene flow, and the phylogenetic relationships of haplotypes indicate that the southern-most population (representing the extreme of morphological variation along this cline) has been relatively isolated from populations to the north and has experienced a reduced effective population size. The apparent clinal variation between the southern population and the others may therefore reflect secondary contact and introgression rather than primary intergradation.  相似文献   

18.
This study presents a comparative hierarchical analysis of variance applied to three classes of molecular markers within the blue marlin (Makaira nigricans). Results are reported from analyses of four polymorphic allozyme loci, four polymorphic anonymously chosen single-copy nuclear DNA (scnDNA) loci, and previously reported restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA). Samples were collected within and among the Atlantic and Pacific Oceans over a period of several years. Although moderate levels of genetic variation were detected at both polymorphic allozyme (H = 0.30) and scnDNA loci (H = 0.37), mtDNA markers were much more diverse (h = 0.85). Allele frequencies were significantly different between Atlantic and Pacific Ocean samples at three of four allozyme loci and three of four scnDNA loci. Estimates of allozyme genetic differentiation (θO) ranged from 0.00 to 0.15, with a mean of 0.08. The θO values for scnDNA loci were similar to those of allozymes, ranging from 0.00 to 0.12 with a mean of 0.09. MtDNA RFLP divergence between oceans (θO = 0.39) was significantly greater than divergence detected at nuclear loci (95% nuclear confidence interval = 0.04–0.11). The fourfold smaller effective population size of mtDNA and male-mediated gene flow may account for the difference observed between nuclear and mitochondrial divergence estimates.  相似文献   

19.
We analysed mitochondrial (cytochrome  b ) nucleotide sequences, nuclear allozyme markers, and morphometric characters to investigate species boundaries and phylogenetic relationships among dusky salamanders ( Desmognathus ) in the southern Blue Ridge and adjacent Piedmont Physiographic Provinces of Virginia and North Carolina. Our results revealed four distinct mitochondrial DNA clades that are also characterized by distinct allozyme markers. One clade consists of sequences derived from populations distributed from New England to south-western Virginia that are referable to Desmognathus fuscus Rafinesque, 1820, although there is considerable sequence and allozyme divergence within this clade. A second clade consists of sequences derived from populations referable to Desmognathus planiceps Newman, 1955, a form that we resurrect from its long synonymy under D. fuscus . Desmognathus planiceps and D. fuscus also differ in mandibular tooth shape. Two other cytochrome  b sequences recovered from populations along the Blue Ridge escarpment in southern Virginia are quite divergent from those of the previous two clades, and these populations may represent yet another distinct species. Sequences from a population in the Brushy Mountains in the Piedmont of northern North Carolina are similar to those of Desmognathus carolinensis . Population groupings indicated by allozyme data generally correspond to the cytochrome  b clades. Cryptic diversity in Appalachian desmognathan salamanders clearly requires further study. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 115–130.  相似文献   

20.
When the level of gene flow among populations depends upon the geographic distance separating them, genetic differentiation is relatively enhanced. Although the larval dispersal capabilities of marine organisms generally correlate with inferred levels of average gene flow, the effect of different modes of larval development on the association between gene flow and geographic distance remains unknown. In this paper, I examined the relationship between gene flow and distance in two co-occurring solitary corals. Balanophyllia elegans broods large, nonfeeding planulae that generally crawl only short distances from their place of birth before settling. In contrast, Paracyathus stearnsii free-spawns and produces small planktonic larvae presumably capable of broad dispersal by oceanic currents. I calculated F-statistics using genetic variation at six (P. stearnsii) or seven (B. elegans) polymorphic allozyme loci revealed by starch gel electrophoresis, and used these F-statistics to infer levels of gene flow. Average levels of gene flow among twelve Californian localities agreed with previous studies: the species with planktonic, feeding larvae was less genetically subdivided than the brooding species. In addition, geographic isolation between populations appeared to affect gene flow between populations in very different ways in the two species. In the brooding B. elegans, gene flow declined with increasing separation, and distance explained 31% of the variation in gene flow. In the planktonically dispersed P. stearnsii distance of separation between populations at the scale studied (10–1000 km) explained only 1% of the variation in gene flow between populations. The mechanisms generating geographic genetic differentiation in species with different modes of larval development should vary fundamentally as a result of these qualitative differences in the dependence of gene flow on distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号