首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Multiminicore disease (MmD) is an autosomal recessive congenital myopathy characterized by the presence of multiple, short core lesions (known as "minicores") in most muscle fibers. MmD is a clinically heterogeneous condition, in which four subgroups have been distinguished. Homozygous RYR1 mutations have been recently identified in the moderate form of MmD with hand involvement. The genes responsible for the three other forms (including the most prevalent phenotype, termed the "classical" phenotype) remained, so far, unknown. To further characterize the genetic basis of MmD, we analyzed a series of 62 patients through a combined positional/candidate-gene approach. On the basis of clinical and morphological data, we suspected a relationship between classical MmD and the selenoprotein N gene (SEPN1), which is located on chromosome 1p36 (RSMD1 locus) and is responsible for the congenital muscular dystrophy with rigid spine syndrome (RSMD). A genomewide screening, followed by the analysis of 1p36 microsatellite markers in 27 informative families with MmD, demonstrated linkage to RSMD1 in eight families. All showed an axial myopathy with scoliosis and respiratory failure, consistent with the most severe end of the classical MmD spectrum; spinal rigidity was evident in some, but not all, patients. We excluded linkage to RSMD1 in 19 families with MmD, including 9 with classical MmD. Screening of SEPN1 in the 8 families that showed linkage and in 14 patients with classical sporadic disease disclosed 9 mutations affecting 17 patients (12 families); 6 were novel mutations, and 3 had been described in patients with RSMD. Analysis of three deltoid biopsy specimens from patients with typical RSMD revealed a wide myopathological variability, ranging from a dystrophic to a congenital myopathy pattern. A variable proportion of minicores was found in all the samples. The present study represents the first identification of a gene responsible for classical MmD, demonstrates its genetic heterogeneity, and reassesses the nosological boundaries between MmD and RSMD.  相似文献   

4.
Glaucoma is a leading cause of blindness worldwide. The disease is characterized by a degeneration of the optic nerve, which is usually associated with elevated intraocular pressure. The common form of adult-onset primary open-angle glaucoma is inherited as a complex trait, whereas the rarer early-onset juvenile open-angle glaucoma (JOAG) exhibits autosomal dominant inheritance. Of all cases of JOAG, approximately 10%-20% are caused by mutations in the myocilin gene. We have identified 25 pedigrees that are affected with typical JOAG and that demonstrate autosomal dominant inheritance. We sequenced the myocilin gene in probands from each family and found mutations in 8% of this population. To identify novel genes responsible for JOAG, we used families that did not have myocilin mutations for a genomewide screen. Markers located on chromosomes 9q22 and 20p12 showed evidence for linkage, identifying two novel loci for early-onset open-angle glaucoma.  相似文献   

5.
6.
We have performed linkage analysis on 21 families with pseudoxanthoma elasticum (PXE) using 10 polymorphic markers located on chromosome 16p13.1. The gene responsible for the PXE phenotype was localized to an 8-cM region of 16p13.1 between markers D16S500 and D16S3041 with a maximum lod score of 8.1 at a recombination fraction of 0.04 for marker D16S3017. The lack of any locus heterogeneity suggests that the major predisposing allele for the PXE phenotype is located in this region. Haplotype studies of a total of 36 PXE families identified several recombinations that further confined the PXE gene to a region (< 1 cM) between markers D16S3060 and D16S79. This PXE locus was identified within a single YAC clone and several overlapping BAC recombinants. From sequence analysis of these BAC recombinants, it is clear that the distance between markers D16S3060 and D16S79 is about 820 kb and contains a total of nine genes including three pseudogenes. We predict that mutations in one of the expressed genes in the locus will be responsible for the PXE phenotype in these families.  相似文献   

7.
The autosomal recessive disorder primary congenital glaucoma (PCG) is caused by unknown developmental defect(s) of the trabecular meshwork and anterior chamber angle of the eye. Homozygosity mapping with a DNA pooling strategy in three large consanguineous Saudi PCG families identified the GLC3A locus on chromosome 2p21 in a region tightly linked to PCG in another population. Formal linkage analysis in 25 Saudi PCG families confirmed both significant linkage to polymorphic markers in this region and incomplete penetrance, but it showed no evidence of genetic heterogeneity. For these 25 families, the maximum combined two-point LOD score was 15.76 at a recombination fraction of .021, with the polymorphic marker D2S177. Both haplotype analysis and homozygosity mapping in these families localized GLC3A to a 5-cM critical interval delineated by markers D2S2186 and D2S1356. Sequence analysis of the coding exons for cytochrome P4501B1 (CYP1B1) in these 25 families revealed three distinctive mutations that segregate with the phenotype in 24 families. Additional clinical and molecular data on some mildly affected relatives showed variable expressivity of PCG in this population. These results should stimulate a study of the genetic and environmental events that modify the effects of CYP1B1 mutations in ocular development. Furthermore, the small number of PCG mutations identified in this Saudi population makes both neonatal and population screening attractive public health measures.  相似文献   

8.
9.
Pelizaeus Merzbacher disease and Pelizaeus Merzbacher like disease (PMLD) are hypomyelinating leucodystrophies of the central nervous system (CNS) with a very similar phenotype. PMD is an X-linked recessive condition caused by mutations, deletion duplication or triplication of the proteolipid protein 1 gene (PLP1). However, PMLD is a recessive autosomal hypomyelinating leukodystrophy caused by mutations of the GJC2 gene. In this study, we analyzed 5 patients belonging to 4 Tunisian families. Direct sequencing of GJC2 gene in all probands showed the same homozygous founder mutation c.-167A>G localized in the promoter region. We also generated two microsatellite markers GJC2 195GT and GJC2 76AC closed to the GJC2 gene to confirm the presence of a founder effect for this mutation. Haplotype study showed that the c.-167A>G promoter mutation occurred in a specific founder haplotype in Tunisian population. The identification of this founder mutation has important implications towards genetic counseling in relatives of these families and the antenatal diagnosis.  相似文献   

10.
Familial glaucoma iridogoniodysplasia (FGI) is a form of open-angle glaucoma in which developmental anomalies of the iris and irido-corneal angle are associated with a juvenile-onset glaucoma transmitted as an autosomal dominant trait. A single large family with this disorder was examined for genetic linkage to microsatellite markers. A peak LOD score of 11.63 at a recombination fraction of 0 was obtained with marker D6S967 mapping to chromosome 6p25. Haplotype analysis places the disease gene in a 6.4-cM interval between the markers D6S1713 and D6S1600. Two novel clinical appearances extend the phenotypic range and provide evidence of variable expressivity. The chromosome 6p25 region is now implicated in FGI, primary congenital glaucoma, and iridogoniodysgenesis anomaly. This may indicate the presence of a common causative gene or, alternatively, a cluster of genes involved in eye development/function.  相似文献   

11.
Glaucoma is the second most frequent cause of irreversible blindness worldwide. Genetic factors have been implicated in the development of the disease. So far six loci (GLC1A-GLC1F) and two genes (TIGR/MYOC and OPTN) are involved in the development of juvenile (JOAG) and adult onset or chronic primary open angle glaucoma (COAG), while two loci (GLC3A,GLC3B) and one gene (CYP1B1) are known for primary congenital glaucoma (PCG). Here we summarize the results of the first genetic studies of glaucoma in Costa Rica. Nine families: 1 with JOAG, 1 with PCG and 7 with COAG were screened for mutations at the known genes. A 10 bp duplication, 1546-1555dupTCATGCCACC, at the CYP1B1 gene, causes, in homozygous state, glaucoma in the consanguineous PCG family. This mutation has been found in different countries and generates an early stop codon that termitates protein synthesis 140 amino acids earlier than the normal allele. In exon 1 of the T1GR/MYOC the innocuous Arg76Lys variant was found in two of the COAG families. In the OPTN gene two variants in the coding region (Thr34Thr, Met 98Lys) and 7 intronic changes were found in other Costa Rican glaucoma patients. One of the COAG families was chosen for a genome scan with 379 microsatellite markers and linkage analysis. LOD scores "suggestive" of linkage were obtained for several chromosomal regions. Evidence indicates that hereditary glaucoma in Costa Rica is highly heterogeneous and that further studies in the country will probably disclose some up to now unknown genes responsible for the disease.  相似文献   

12.
Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies are the most commonly inherited neurological disorders in humans, characterized by clinical and genetic heterogeneity. The most prevalent clinical entities belonging to this group of disorders are CMT type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). CMT1A and HNPP are predominantly caused by a 1.5 Mb duplication and deletion in the chromosomal region 17p11.2, respectively, and less frequently by other mutations in the peripheral myelin protein 22 (PMP22) gene. Despite being relatively common diseases, they haven't been previously studied in the Slovak population. Therefore, the aim of this study was to identify the spectrum and frequency of PMP22 mutations in the Slovak population by screening 119 families with CMT and 2 families with HNPP for causative mutations in this gene. The copy number determination of PMP22 resulted in the detection of CMT1A duplication in 40 families and the detection of HNPP deletion in 7 families, 6 of which were originally diagnosed as CMT. Consequent mutation screening of families without duplication or deletion using dHPLC and sequencing identified 6 single base changes (3 unpublished to date), from which only c.327C>A (Cys109X) present in one family was provably causative. These results confirm the leading role of PMP22 mutation analysis in the differential diagnosis of CMT and show that the spectrum and frequency of PMP22 mutations in the Slovak population is comparable to that seen in the global population.  相似文献   

13.
Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. We studied two families that both presented a phenotype different than that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described.  相似文献   

14.
Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzed the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by histopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene.  相似文献   

15.
Previously we confirmed linkage of autosomal dominantly inherited low-frequency sensorineural hearing impairment (LFSNHI) in a German family to the genetic locus DFNA6/DFNA14 on chromosome 4p16.3 close to the markers D4S432 and D4S431. Analysis of data from the Human Genome Project, showed that WFS1 is located in this region. Mutations in WFS1 are known to be responsible for Wolfram syndrome (DIDMOAD, MIM #606201), which follows an autosomal recessive trait. Studies in low-frequency hearing loss families showed that mutations in WFS1 were responsible for the phenotype. In all affected family members analysed, we detected a missense mutation in WFS1 (K705N) and therefore confirm the finding that the majority of mutations responsible for LFSNHI are missense mutations which localise to the C-terminal domain of the protein.  相似文献   

16.
17.
Cystinuria is a genetic disease manifested by the development of kidney stones. In some patients, the disease is caused by mutations in the SLC3A1 gene located on chromosome 2p. In others, the disease is caused by a gene that maps to chromosome 19q, but has not yet been cloned. Cystinuria is very common among Jews of Libyan ancestry living in Israel. Previously we have shown that the disease-causing gene in Libyan Jews maps to an 8-cM interval on chromosome 19q between the markers D19S409 and D19S208. Several markers from chromosome 19q showed strong linkage disequilibrium, and a specific haplotype was found in more than half of the carrier chromosomes. In this study we have analyzed Libyan Jewish cystinuria families with eight markers from within the interval containing the gene. Seven of these markers showed significant linkage disequilibrium. A common haplotype was found in 16 of the 17 carrier chromosomes. Analysis of historical recombinants placed the gene in a 1.8-Mb interval between the markers D19S430 and D19S874. Two segments of the historical carrier chromosome used to calculate the mutation's age revealed that the disease-causing mutation was introduced into this population 7-16 generations ago.  相似文献   

18.
19.
20.
Charcot-Marie-Tooth type (CMT1) disease or hereditary motor and sensory neuropathy type I (HMSNI) is an autosomal dominant peripheral neuropathy. In most CMT1 families, the disease cosegregates with a 1.5-Mb duplication on chromosome 17p11.2 (CMT1A). A few patients have been found with mutations in the peripheral myelin protein 22 (PMP-22) gene located in the CMT1A region. In other families mutations have been identified in the major peripheral myelin protein po gene localized on chromosome Iq21-q23 (CMT1B). We performed a rapid mutation screening of the PMP-22 and P0 genes in non-duplicated CMT1 patients by single-strand conformation polymorphism analysis followed by direct polymerase chain reaction sequencing of genomic DNA. Six new single base changes in the P0 gene were observed: two missense mutations in, respectively, exons 2 and 3, two nonsense mutations in exon 4, and two silent mutations or polymorphisms in, respectively, exons 3 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号