首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yu X  Liu T  Sun Z  Guan P  Zhu J  Wang S  Li S  Deng Q  Wang L  Zheng A  Li P 《Current microbiology》2012,64(4):326-331
Vegetative insecticidal protein (Vip3) from Bacillus thuringiensis shows high activity against lepidopteran insects. Cytolytic δ-endotoxin (Cyt) also has high toxicity to dipteran larvae and synergism with other crystal proteins (Cry), but synergism between Cyt and Vip3 proteins has not been tested. We analyzed for synergism between Cyt2Aa3 and Vip3Aa29. Both cyt2Aa3 and vip3Aa29 genes were co-expressed in Escherichia coli strain BL21 carried on vector pCOLADuet-1. Vip3Aa29 showed insecticidal activity against Chilo suppressalis and Spodoptera exigua, with 50% lethal concentration (LC(50)) at 24.0 and 36.6 μg ml(-1), respectively. It could also inhibit Helicoverpa armigera growth, with 50% inhibition concentration at 22.6 μg ml(-1). While Cyt2Aa3 was toxic to Culex quinquefasciatus (LC(50): 0.53 μg ml(-1)) and Chironomus tepperi (LC(50): 36 μg ml(-1)), it did not inhibit C. suppressalis, S. exigua, and H. armigera. However, the co-expression of Cyt2Aa3 and Vip3Aa29 showed synergistic effect on C. suppressalis and S. exigua, and the individual activities were strengthened 3.35- and 4.34-fold, respectively. The co-expression had no synergism against C. tepperi and H. armigera, but exerted some antagonistic effect on Cx. quinquefasciatus. The synergism between Cyt2Aa and Vip3Aa was thus discovered for the first time, which confirmed that Cyt toxin can enhance the toxicity of other toxins against some non-target insects. By synergism analysis, the effectiveness of microbial insecticides can be verified.  相似文献   

3.
The toxicity of Bacillus thuringiensis Cyt1Aa protein to sheep blowfly larvae depends on its solubilization and proteolytic activation. Cyt1Aa crystals were not toxic. Full-length and trypsin-digested Cyt1Aa proteins were toxic to larvae of three species of sheep blowfly. Neither full-length nor trypsin-digested Cyt2A soluble crystal proteins were toxic.  相似文献   

4.
A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors.  相似文献   

5.
In the recent past research has been mainly focused on the expression of cry1 genes of Bacillus thuringiensis (Bt) to engineer lepidopteran insect resistance in plants. Search for structurally different toxins is necessary for the management of resistance development in insects. The intact cry2Aa operon (3.95 kb) of a new isolate of Bt, 47-8, was subcloned into a Bt shuttle vector, pHT3101 (6.7 kb). Recombinant pHT3101 containing the cry2Aa operon of Bt strain 47-8 was named as pTN2Aa and used to transform acrystalliferous Bt strain 4Q7 by electroporation. Phase contrast microscopic observation revealed the presence of crystalline inclusions in the transformants of Bt strain 4Q7 harbouring pTN2Aa. SDS–PAGE of a spore–crystal mixture prepared from transformants of acrystalliferous Bt strain 4Q7 harbouring pTN2Aa showed a single band of about 65 kDa alone confirming the expression of the cloned cry2Aa. Bioassay with Helicoverpa armigera showed 71.4% mortality caused by the proteins encoded by the newly cloned cry2Aa gene (at the concentration of 2.3 g/l) on the seventh day and all the survivors that escaped from Cry2Aa toxicity showed severe (81–99%) inhibition in larval growth.  相似文献   

6.
The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance.Bacillus sphaericus is considered an important entomopathogen due to its capacity to produce insecticidal proteins with specific action against mosquitoes (Diptera: Culicidae). The binary (Bin) toxin, which is produced during bacterial sporulation and deposited in parasporal crystalline inclusions, is the most important larvicidal factor. Other proteins characterized, such as mosquitocidal toxins (Mtx proteins), can be produced during vegetative growth, and although these proteins may have larvicidal potential, they play a minor role in the toxicity of the native strains since they are produced by vegetative cells and are degraded by B. sphaericus proteinases (20, 30), and do not form components of the spore-crystal preparations that are used in control programs. Recently, a new two-component toxin was characterized from B. sphaericus strain IAB59. This is formed by the proteins Cry48Aa (135 kDa) and Cry49Aa (53 kDa), which are produced as crystalline inclusions (13). The toxin has a unique composition since the Cry48Aa component belongs to the three-domain family of Cry proteins with 30% similarity to the mosquitocidal Cry4Aa protein from Bacillus thuringiensis serovar israelensis, while Cry49Aa is one of the Bin-toxin-like proteins, a family that comprises the Bin toxin from B. sphaericus, in addition to the Cry36 and Cry35 proteins from B. thuringiensis (9, 13).Cry48Aa/Cry49Aa is considered a two-component toxin because neither component shows toxicity alone, whereas both can act in synergy and the optimum level of toxicity to Culex species is achieved when the two are present at an equimolar ratio. The 50% lethal concentration for third-instar larvae equates to 15.9 ng/ml Cry48Aa and 6.3 ng/ml Cry49Aa of purified toxins, which is a level of toxicity comparable to that of the Bin toxin (13). However, in contrast to the Bin toxin, which is naturally produced in an equimolar ratio, Cry48Aa production is low in native strains and does not confer high toxicity (13). The initial steps of the mode of action of Bin and Cry48Aa/Cry49Aa crystals are similar and comprise the ingestion of crystals, solubilization under alkaline pH, and activation of protoxins into toxins by midgut proteases. After processing, Bin toxin recognizes and binds to specific receptors in the midgut of Bin-toxin-susceptible species through its subunit BinB (51 kDa), while the component BinA (42 kDa) confers toxicity and is likely to form pores in the cell membrane (7, 25). The membrane-bound receptors of Bin toxin on the midgut of Culex quinquefasciatus larvae, Cqm1, were characterized as 60-kDa α-glucosidases (24). The mode of action of Cry48Aa/Cry49Aa is still unknown, but a remarkable feature of this new two-component toxin is the capacity to overcome C. quinquefasciatus resistance to the Bin toxin (13, 19, 21). Resistance of Culex larvae to the Bin-toxin-based larvicides often relies on the absence of functional Cqm1 receptors in the midgut (19, 24, 26). As a consequence, toxins with a distinct mode of action, such as Cry48Aa/Cry49Aa as well as B. thuringiensis serovar israelensis toxins (Cry11Aa, Cry4Aa, Cry4Ba, and Cyt1Aa), do not experience cross-resistance in the Bin-toxin-resistant larvae (12, 21, 32). Such toxins can play a strategic role in the management of resistance, and the major goal of this study was to investigate the ultrastructural effects of the Cry48Aa/Cry49Aa toxin on Bin-toxin-susceptible and -resistant C. quinquefasciatus larvae and to compare these with the effects of a synergistic mixture of Bin/Cry11Aa used to overcome Bin toxin resistance.  相似文献   

7.
The insecticidal Cry11Aa and Cyt1Aa proteins are produced by Bacillus thuringiensis as crystal inclusions. They work synergistically inducing high toxicity against mosquito larvae. It was proposed that these crystal inclusions are rapidly solubilized and activated in the gut lumen, followed by pore formation in midgut cells killing the larvae. In addition, Cyt1Aa functions as a Cry11Aa binding receptor, inducing Cry11Aa oligomerization and membrane insertion. Here, we used fluorescent labeled crystals, protoxins or activated toxins for in vivo localization at nano-scale resolution. We show that after larvae were fed solubilized proteins, these proteins were not accumulated inside the gut and larvae were not killed. In contrast, if larvae were fed soluble non-toxic mutant proteins, these proteins were found inside the gut bound to gut-microvilli. Only feeding with crystal inclusions resulted in high larval mortality, suggesting that they have a role for an optimal intoxication process. At the macroscopic level, Cry11Aa completely degraded the gastric caeca structure and, in the presence of Cyt1Aa, this effect was observed at lower toxin-concentrations and at shorter periods. The labeled Cry11Aa crystal protein, after midgut processing, binds to the gastric caeca and posterior midgut regions, and also to anterior and medium regions where it is internalized in ordered “net like” structures, leading finally to cell break down. During synergism both Cry11Aa and Cyt1Aa toxins showed a dynamic layered array at the surface of apical microvilli, where Cry11Aa is localized in the lower layer closer to the cell cytoplasm, and Cyt1Aa is layered over Cry11Aa. This array depends on the pore formation activity of Cry11Aa, since the non-toxic mutant Cry11Aa-E97A, which is unable to oligomerize, inverted this array. Internalization of Cry11Aa was also observed during synergism. These data indicate that the mechanism of action of Cry11Aa is more complex than previously anticipated, and may involve additional steps besides pore-formation activity.  相似文献   

8.
Bacillus thuringiensis subsp. israelensis is the most widely used microbial control agent against mosquitoes and blackflies. Its insecticidal success is based on an arsenal of toxins, such as Cry4A, Cry4B, Cry11A, and Cyt1A, harbored in the parasporal crystal of the bacterium. A fifth toxin, Cry10Aa, is synthesized at very low levels; previous attempts to clone and express Cry10Aa were limited, and no parasporal body was formed. By using a new strategy, the whole Cry10A operon was cloned in the pSTAB vector, where both open reading frames ORF1 and ORF2 (and the gap between the two) were located, under the control of the cyt1A operon and the STAB-SD stabilizer sequence characteristic of this vector. Once the acrystalliferous mutant 4Q7 of B. thuringiensis subsp. israelensis was transformed with this construct, parasporal bodies were observed by phase-contrast microscopy and transmission electron microscopy. Discrete, ca. 0.9-μm amorphous parasporal bodies were observed in the mature sporangia, which were readily purified by gradient centrifugation once autolysis had occurred. Pure parasporal bodies showed two major bands of ca. 68 and 56 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. These bands were further characterized by N-terminal sequencing of tryptic fragments using matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, which identified both bands as the products of ORF1 and ORF2, respectively. Bioassays against fourth-instar larvae of Aedes aegypti of spore-crystal complex and pure crystals of Cry10Aa gave estimated 50% lethal concentrations of 2,061 ng/ml and 239 ng/ml, respectively. Additionally, synergism was clearly detected between Cry10A and Cyt1A, as the synergistic levels (potentiation rates) were estimated at 13.3 for the mixture of Cyt1A crystals and Cry10Aa spore-crystal complex and 12.6 for the combination of Cyt1A and Cry10Aa pure crystals.The subspecies Bacillus thuringiensis subsp. israelensis (serotype H-14) was discovered by Goldberg and Margalit in 1977 (11). To date, its insecticidal potential has not been overcome by any other bacterium (or any biological control agent) as an effective control measure against mosquito and blackfly larvae (8). Recently, its toxicity spectrum has been expanded to a coleopteran pest, the coffee berry borer (Hypothenemus hampei) (23), indicating that this strain may have potential versatility. Also, the so-called pBtoxis megaplasmid harbored in this strain, containing all the endotoxin-encoding genes found in its parasporal crystal, including cry4A, cry4B, cry10A, cry11A, and cyt1A, was recently sequenced (1). Among many other interesting aspects of this serotype, the occurrence of this mosquitocidal arsenal in one strain and their synergistic interaction make this bacterium scientifically and technologically attractive.The parasporal crystal of B. thuringiensis subsp. israelensis contains large amounts of Cry4A, Cry4B, Cry11A, and Cyt1A toxins (14), and consequently, most of the knowledge about the toxicity of this strain has been focused on these proteins, acting either as a complex (31) or tested separately (6). Although the cry10Aa gene was originally cloned in 1986 (known then as cryIVC) (30), to date, little is known about cry10Aa and the protein it encodes, mostly due to its very low levels of expression (10) in B. thuringiensis subsp. israelensis. Interestingly, cry10Aa is an operon as it includes two open reading frames (ORFs), previously reported as pBt047 and pBt048 (hereafter referred to only as ORF1 and ORF2, respectively), separated by a 48-bp untranslated gap (1). ORF1 contains the complete δ-endotoxin sequence (active toxin), with a coding capacity for a 78-kDa protein. Interestingly, ORF2 shows high identity with the coding sequence of the C-terminal half of Cry4-type proteins, with a coding capacity for a 56-kDa protein. Therefore, it is believed that a putative ancestral cry10Aa gene is similar in size to the cry4-type genes (ca. 4 kbp), but either a small sequence had been inserted in the middle of the coding sequence or site mutations produced end codons (two end codons flank the gap) in this region (1).Previous attempts to clone and express the cry10Aa gene included ORF1 and only part of ORF2 (7, 10, 30). This was a reasonable strategy, as most of the so-called “complete” protoxins are partially digested to become active toxins (δ-endotoxins) (28), and ORF1 included the complete sequence to code the Cry10Aa δ-endotoxin. However, in all these cases, the expression levels were very low, and no parasporal body was formed. Similar results were obtained when the promoter was changed and a stabilizing sequence was added to the construction (13). The low expression levels achieved in these cases led to conclusions that assumed low toxic levels of Cry10Aa when tested against mosquito larvae (30). In spite of the low toxicity of Cry10Aa found against mosquito larvae, a synergistic effect was reported between Cry10Aa and Cry4Ba toxins in Culex (7). Obtaining high levels of expression and crystallization of Cry10Aa are required to properly characterize and understand the toxic spectrum of this protein.In this report, we show the formation of parasporal bodies of Cry10Aa, achieved by cloning the whole Cry10Aa operon under the control of the cyt1A promoter and the STAB-SD sequence. We also show that Cry10Aa is as toxic as most of the other B. thuringiensis subsp. israelensis toxins acting separately, and in synergism with the Cyt1A toxin.  相似文献   

9.
利用穿梭载体pBU4,将苏云金杆菌以色列亚种(Bti)的cry4Aa、cry4Ba和cry11Aa基因分别转入Bti无晶体突变株4Q7中,获得了转化菌株Bt-B601、Bt-B611和Bt-B640.SDS-PAGE结果显示Cry4Aa、Cry4Ba和Cry11Aa蛋白均分别获得了表达.透射电镜下观察,转化菌株能产生球形或菱形伴胞晶体.转化菌株对敏感和抗性致倦库蚊及白纹伊蚊幼虫的生物测定结果显示Cry4Aa、Cry4Ba和Cry11Aa蛋白对库蚊和伊蚊的毒力较低,二元毒素抗性库蚊幼虫对Bti杀蚊毒素蛋白无明显的交叉抗性.  相似文献   

10.
利用穿梭载体pBU4,将苏云金杆菌以色列亚种(Bti)的cry4Aa、cry4Ba和cry11Aa基因分别转入Bti无晶体突变株4Q7中,获得了转化菌株Bt-B601、Bt-B611和Bt-B640。SDS-PAGE结果显示:cry4Aa、cry4Ba和cry11Aa蛋白均分别获得了表达。透射电镜下观察,转化菌 有产生球形或菱形伴胞晶体。转化菌株对敏感和抗性致倦库蚊及白纹伊蚊幼虫的生物测定结果显示:cry4Aa、cry4Ba和cry11Aa蛋白对库蚊和伊蚊的毒力较低,二元毒素抗性库蚊幼虫对Bti杀蚊毒素蛋白无明显的交叉抗性。  相似文献   

11.
The Sip1Aa protein from Bacillus thuringiensis is highly toxic to Colaphellus bowringi Baly. In order to obtain mutant proteins with higher insecticidal activity, a random recombinant library of Sip1Aa protein was constructed using error-prone PCR. A total number of 100 positive transformants were randomly selected for sequence determination, and 25 mutants (M1 to M25) were selected and expressed the respective Sip1Aa mutants. These Sip1Aa variants had a total of 29 base mutations, with an average of 1.2 base mutations per mutant. Compared with that of the wild-type Sip1Aa protein, the insecticidal activity of the mutants M1 (A31G, Y118C, D227E), M5 (K168R) and M21 (I307T) was significantly decreased, with and LC50 values 4 to 6 times higher than the Sip1Aa protein. The mutant M8 (R174S) showed increase in the insecticidal activity against the Colaphellus bowringi Baly was obtained, with an LC50 value 4-fold less than the Sip1Aa protein. The results of this study provide reference for the molecular modification of Sip1Aa protein and the study of key sites of its insecticidal activity.  相似文献   

12.
Bacillus thuringiensis ssp. israelensis (Bti) has been used worldwide for the control of dipteran insect pests. This bacterium produces several Cry and Cyt toxins that individually show activity against mosquitoes but together show synergistic effect. Previous work demonstrated that Cyt1Aa synergizes the toxic activity of Cry11Aa by functioning as a membrane-bound receptor. In the case of Cry toxins active against lepidopteran insects, receptor interaction triggers the formation of a pre-pore oligomer that is responsible for pore formation and toxicity. In this work we report that binding of Cry11Aa to Cyt1Aa facilitates the formation of a Cry11Aa pre-pore oligomeric structure that is capable of forming pores in membrane vesicles. Cry11Aa and Cyt1A point mutants affected in binding and in synergism had a correlative effect on the formation of Cry11Aa pre-pore oligomer and on pore-formation activity of Cry11Aa. These data further support that Cyt1Aa interacts with Cry11Aa and demonstrate the molecular mechanism by which Cyt1Aa synergizes or suppresses resistance to Cry11Aa, by providing a binding site for Cry11Aa that will result in an efficient formation of Cry11Aa pre-pore that inserts into membranes and forms ionic pores.  相似文献   

13.
Bacillus thuringiensis insecticidal proteins, Cry toxins, following ingestion by insect larvae, induce insecticidal effect by penetrating the brush border membranes (BBM) of midgut epithelial cells. Purified, activated B. thuringiensis Cry1Aa bound to Bombyx mori BBMV or unbound Cry1Aa were vigorously digested with Pronase. Both digests were compared by Western blotting. Free Cry1Aa was digested to α-helix and/or to amino acids at 1 mg Pronase/mL within 2.4 h at 37 °C. Whereas, BBMV-bound Cry1Aa was very resistant to Pronase digestion and even at 2 mg for 24 h, 7.5 kDa and 30 kDa peptide were detected by α-2,3 antiserum, and α-4,5 and α-6,7 antisera, respectively. Another 30 kDa peptide was also detected by β-6-11 and domain III antisera. These fragments are believed either to be embedded in or to strongly interact with the BBMV. The 7.5 and former 30 kDa peptides are thought to be derived from α-2,3 helix and stretch of α-4 to α-7 helices. Furthermore the latter 30 kDa was thought to include the stretch of β-6 to domain III. Moreover, the embedded Cry1Aa molecule appears to be segregated in some areas of β-1-5 sheets, resulting in the above two 30 kDa peptides. From these digestion patterns, we proposed new membrane insertion model for single Cry1Aa molecule. On the other hand, in digestion of BBMV-bound Cry1Aa, 15 kDa peptide which was recognized only by α-4,5 antiserum was observed. This fragment must be dimeric α-4,5 helices and we discussed the origin of this peptide.  相似文献   

14.
我国棉花抗虫基因大都为Cry1Ab/c,抗性风险日趋增加。本研究依据棉花密码子偏好,人工合成Bt-Cry5Aa抗虫基因,通过花粉管通道法转入棉花,并通过卡那霉素法及PCR方法对不同世代转化株进行鉴定,同时进行了抗虫性测试。结果表明,通过花粉管通道法成功获得转Bt-Cry5Aa基因植株,通过田间卡那霉素鉴定,阳性株率T1为7.76%,T2为73.1%,T3为95.5%;PCR检测显示,T1阳性率为2.35%,T2为55.8%,T3为94.5%;田间抗性试验分析,转Bt-Cry5Aa株系对第2、3、4代棉铃虫校正死亡率分别达到85.42%、75.35%和62.79%,其抗虫性与GK19相比差异不显著;Bt-Cry5Aa能够部分替代目前主流鳞翅目抗虫基因,是棉铃虫的新抗源。  相似文献   

15.
A triple recombineering technique was used with plasmid pHT315 to produce pHTEC, a construct carrying chitinase and cry2Aa genes from Bacillus thuringiensis subsp. kurstaki 4.0718. Transformation of wild-type B. thuringiensis strain HD73 and the acrystalliferous strain Cry-B with pHTEC resulted in the recovery of recombinant strains that expressed Cry2Aa as cubic crystals in the cell pellet and soluble chitinase protein. The toxicity of HD73 (pHTEC) against Helicoverpa armigera larvae increased sevenfold when compared with HD73 (pHT315) harboring pHT315 vector. The triple recombineering protocol was optimized by comparing recombination efficacy mediated by RecE/RecT and Redα/Redβ and by using single-strand DNA as substrate.  相似文献   

16.
17.
Cry15Aa protein, produced by Bacillus thuringiensis serovar thompsoni HD542, in a crystal together with a 40 kDa accompanying protein, is one of a small group of non-typical, less well-studied members of the Cry family of insecticidal proteins, and may provide an alternative for the more commonly used Cry proteins in insect pest management. In this study we examined the role of the C-terminal part of Cry15Aa and of the 40 kDa protein in crystal formation in recombinant B. thuringiensis. The contribution of the 40 kDa protein and of the Cry15Aa carboxy-terminal sequence for crystal formation, crystal solubilization, and insecticidal properties was assessed. No significant differences in toxicity against Cydia pomonella, before or after in vitro solubilization of crystal-spore preparations, were found. Although the 40 kDa protein significantly contributes to in vitro solubility and in vivo crystal formation of Cry15Aa, no direct evidence for involvement of the 40 kDa protein in toxicity of Cry15Aa was found.  相似文献   

18.
苏云金芽胞杆菌幕虫亚种的伴胞晶体在预芽胞外壁内侧形成,呈现晶体芽胞粘连的现象。根据已发表的cry26Aa1和cry28Aa1基因序列设计引物,从苏云金芽胞杆菌幕虫亚种T02中扩增得到cry26Aa和cry28Aa基因,通过穿梭载体将这两个基因分别和同时转化到苏云金芽胞杆菌无晶体突变株BMB171后,透射电镜下可在芽胞外壁内侧和外侧同时观察到伴胞晶体,而单独表达时可在芽胞外壁外侧观察到伴胞晶体。结果表明,伴胞晶体在芽胞外壁内侧表达不单独依赖于启动子的时空调控,可能还受到晶体蛋白相互作用的影响。  相似文献   

19.
克隆了Bt9816C的vip3A基因,并将测序结果提交到GenBank(序列号:AY945939)。该基因是一个新的vip3Aa基因,Bt杀虫晶体蛋白命名委员会将其命名为vip3Aa18。在大肠杆菌BL21中表达了该基因,生物测定结果表明纯化的Vip3Aa18蛋白对棉铃虫和甜菜夜蛾具有很高的杀虫活性。序列分析结果显示Vip3Aa18C端536至667位氨基酸残基间是一个糖类结合域,推测可能参与Vip3Aa18与敏感昆虫中肠受体结合;N端272至292位氨基酸残基间存在一个跨膜螺旋,可能与Vip3Aa18形成穿孔有关。此外,Vip3Aa18还可能具有一个二硫键。这些特殊区域和位点可能与其功能密切相关。  相似文献   

20.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号