首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of roots in the enhancement of cytokinin content and leaf growth of Phaseolus vulgaris plants after decapitation and partial defoliation was investigated. Partial excision of the roots of plants which were decapitated above the primary leaf node resulted in a reduction of leaf growth and soluble proteins accumulation in the primary leaves. Roots excision was done at time of decapitation and repeated 8 days later. Endogenous cytokinins, known to be involved in enhancing shoot growth, accumulated in the leaves and stems of decapitated and partially defoliated plants. Lower levels of cytokinins were detected in the leaves of decapitated plants with only a partial root system. The level of cytokinins in the roots of decapitated plants was reduced by partial root excision. The growth and accumulation of cytokinins in leaves were, however, not totally suppressed by removing a large proportion of the roots. At the commencement of the experiment the stem had a higher cytokinin content than both the leaves and roots. This suggests that the stem could be an alternative source of cytokinins to the leaves. The cytokinin complement in the leaves of decapitated plants is not identical to that in the roots. It appears that cytokinins supplied by the roots are metabolized in the leaves, or that alternatively certain cytokinins are synthesized in the leaves themselves.  相似文献   

2.
The cytokinin complex in tobacco leaves of various maturities was characterized by radioimmunoassay and mass spectrometry. Zeatin was the major base, whereas zeatin riboside was identified as the main riboside. in leaves of all maturities studied. Relative to upper younger leaves, the basal yellow leaves had reduced levels of both cytokinin bases and ribosides. Exogenous applications of dihydrozeatin and zeatin to detached tobacco leaves in amounts sufficient to delay senescence, elevated cytokinin base and riboside levels 2–5 fold. Presenescent and senescent leaves of intact plants showed quantitatively similar changes in cytokinin content. which therefore appear to be of significance in control of senescence. When supplied exogenously, the principal cytokinin bases found to occur in tobacco leaves (zeatin and dihydrozeatin) were markedly more effective than auxins and gibberellic acid in retarding senescence. Localised application of cytokinins to leaf blades of detopped plants was much less effective than application to intact plants. The cytokinin induced senescence retardation in tobacco leaves was independent of effects on directed metabolite transport. Evidence that endogenous levels of active cytokinins in intact tobacco leaves are involved in control of sequential leaf senescence is discussed.  相似文献   

3.
Cytokinin-like activity in extracts of leaf laminae, petioles, shoots, roots and flowers of young plants of the water hyacinth, Eichhornia crassipes S. was analyzed following Sephadex LH-20 column chromatography using the soybean callus bioassay. In all plant parts analyzed, two prominent peaks of cytokinin activity having elution volumes similar to zeatin and zeatin riboside were detected. Putative cytokinin gluco-side-like activity was detected only in leaves and flowers. The cytokinin complements of the leaves and the roots were qualitatively different. It would appear that cytokinins supplied by the roots are metabolized in the leaves or certain cytokinins are synthesized in the leaves themselves. The possible significance and distribution of cytokinins in different plant parts in relation to roots is discussed.  相似文献   

4.
We have examined the hypothesis that cytokinins transportedfrom roots to shoots affects leaf growth, stomatal conductance,and cytokinin concentration of leaves of Phaseolus and a hybridpoplar (Populus trichocarpa x Populus deltoides) with hypoxicroots. Because cytokinins may interact with other substances,potassium and calcium concentrations were determined in xylemsap of Populus plants with hypoxic and aerated roots while gibberellin(GA) concentrations were measured in shoot tissues. Root hypoxiadecreased leaf growth and closed stomata in both species. Inboth species, fluxes of cytokinins out of the roots were reduced,but no differences in bulk leaf concentrations were measuredbetween the hypoxic and aerated plants. Shoots with aeratedroots contained slightly higher concentrations of GA1 and GA3than shoots from hypoxic plants. There were no differences incalcium or potassium concentrations in xylem sap between aerationtreatments. Exogenously applied cytokinins did not alleviatethe growth or stomatal responses caused by root hypoxia. Informationon the site(s) and mechanism(s) of cytokinin action and theways in which cytokinins are compartmentalized within plantcells will be required to understand the physiological significanceof cytokinin transport in the transpirational stream. Key words: Cytokinins, hypoxia, Populus, Phaseolus  相似文献   

5.
The effect of nitrogenous nutrients on endogeneous cytokinins and senescence of tobacco leaves was investigated. Ammonium nitrate was the most effective in retarding senescence and its activity was attributed principally to NH4+ ions. Repeated applications or a continuous supply of ammonium nitrate was required for maximal retardation of tobacco leaf senescence. Ammonium nitrate solution supplied via the petioles reduced the senescence retarding effect of dihydrozeatin applied directly to the laminae of detached tobacco leaves. Ammonium nitrate also elevated the endogenous levels of cytokinins (especially zeatin and dihydrozeatin) particularly in growing tobacco leaves excised from near the apex of the plant. Ammonium nitrate induced retardation of leaf senescence may be mediated at least partly by its effect on foliar cytokinin content.  相似文献   

6.
The cytokinin activity of the root exudate, the leaves, and the apices of vegetative and flowering white lupin plants (Lupinus albus L.) was investigated. The level of cytokinin activity in the root exudate decreased over the 11-week experimental period. Four peaks of cytokinin activity were recorded in the root exudate of 8-week-old plants after fractionation on Sephadex LH-20. Two of these peaks co-eluted with zeatin and zeatin riboside. It is suggested that the remaining peaks represent nucleotide and glucoside cytokinins. The cytokinin levels in extracts of the mature leaves fluctuated slightly over the experimental period. Three peaks of activity co-eluting with zeatin, zeatin riboside and the glucoside cytokinins were recorded in extracts of mature leaves of 8-week-old plants. In the apices cytokinin activity could only be detected in the inflorescences of flowering plants. It would appear that cytokinins produced by the roots accumulate in the fully expanded mature leaves, but are utilized in the rapidly growing apical region and in young expanding leaves.  相似文献   

7.
The Role of Roots in Control of Bean Shoot Growth   总被引:10,自引:0,他引:10  
CARMI  A.; HEUER  B. 《Annals of botany》1981,48(4):519-528
Restriction of root growth by growing bean plants (Phaseolusvulgaris L.) in very small pots led to the development of dwarfplants. The leaves of those plants were smaller and their internodesshorter than those of control plants which were grown in largerpots and had developed a more extensive root system. A largequantity of starch—much more than in control plants —accumulated in the leaves and shoots of the dwarf plants. Increasingthe amount of minerals which was supplied to the roots, enhancedleaf growth of the control plants but failed to affect the dwarfones, in spite of the fact that in both cases the treatmentincreased the content of N, P and K in all the plant organs.The leaf water content was similar in both treatments, but theleaf water potential was higher in the dwarf plants. Exogenousapplication of gibberellic acid (GA3) to the dwarf plants overcamethe reduction of stem growth completely, and that of the leavespartially. Application of the cytokinin, benzyladenine (BA)did not affect stem growth, but increased that of the primaryleaves. A combined supply of GA2 + BA restored completely thegrowth of the stem and the primary leaves, and partially thatof the trifoliate leaves. It is concluded that a limited rootsystem restricts shoot growth through an hormonal system inwhich at least gibberellins and cytokinins are involved, andthat the dwarfing is not a consequence of mineral or assimilatedeficiency, or due to water stress. Phaseolus vulgaris L., leaf growth, stem growth, root restriction, gibberellic acid, benzyladenine, cytokinin  相似文献   

8.
The objective of this research was to study the growth responseto drought of arbuscular mycorrhizal and non-mycorrhizal alfalfa(Medicago sativacv. Aragn) in relation to leaf cytokinin levels.In the experiment, four treatments were used: (a) plants inoculatedwith Clomus fasciculatum (Taxter sensu Gerd.) Gerdemann andTrappe and Rhizobium meliloti 102 F51 strain, (MR); (b) plantsinoculated with only Rhizobium (RP); (c) plants inoculated withonly mycorrhizae (MN); and (d) plants non-inoculated (NP). Non-mycorrhizalplants were supplemented with phosphorus and nonnodulated oneswith nitrogen to achieve similar size in all treatments. Plantswere subjected to drought by withholding irrigation in a cyclicway. The effects of drought on growth, number of stems, degreeof senescence, and leaf cytokinin levels were measured. Results of identification of cytokinins showed that dihydrozeatinriboside (dHZR) and ortno-topolin riboside (oTR) were predominantin alfalfa leaves. Nonsymbiotic plants (NP) showed higher totalcytokinin concentrations (dHZR and oTR). Under drought, NP plantsshowed the largest percentage drop in cytokinins and lower numberof stems as well as increased degree of senescent leaf tissuerelative to control values. By contrast, stressed symbioticplants (RP, MN and MR) showed higher green leaf weight thannonsymbiotic ones (NP) due to delay of leaf senescence and maintenance(RP) or increase (MN, MR) of stem leaf cytokinin levels duringdrought. The relationships between growth and the different cytokininsare discussed, suggesting an important role of mycorrhizal symbiosisin maintaining cytokinin levels under drought. Key words: Alfalfa, arbuscular mycorrhizae, cytokinins, drought, leaf senescence  相似文献   

9.
The objectives of this study were: (1) to quantify post-anthesiskernel cytokinin levels in ‘Tibet Dwarf’, a dwarfwheat (Triticum aestivumL.) that accumulates elevated quantitiesof leaf cytokinins; and (2) to measure the effects of temperatureon kernel cytokinin accumulation and mature kernel mass in thiswheat. Post-anthesis kernel cytokinin accumulation was measuredin control plants maintained at 25/12 °C (day/night) andtreated plants which received a 7 d exposure to 35/25 °Cbeginning at anthesis and grown to maturity at 25/15 °C.Zeatin (Z), dihydrozeatin (diHZ) and their respective ribosideswere the predominant cytokinins detected in control and treatedplants. Minimal quantities of isopentenyl adenine-type cytokininswere detected. Kernel cytokinin content peaked within 3 d afteranthesis in both groups and returned to baseline levels within1–2 d. Relative to controls, exposure to high temperaturereduced kernel cytokinin content approx. 80% within 1 d afteranthesis. Because kernel cytokinin in control Tibet Dwarf plantsexceeded that previously measured in other varieties by over100-fold, the reduced content of treated plants still exceededthat of untreated plants of other varieties. The increased cytokinincontent did not enhance thermotolerance. The temperature treatmentreduced mature kernel weights approx. 27%, similar to reductionsmeasured in other wheat varieties.Copyright 1999 Annals of BotanyCompany Triticum aestivum, endosperm development, heat stress, kernel mass, cytokinins.  相似文献   

10.
Cytokinins in addition to nitrate induce nitrate reductase activity (NRA) in some plants. Effects of cytokinins onNRA was investigated in stem pith parenchyma of kale, intact wheat and barley seedlings and isolated cucumber cotyledons. The most profound effect onNRA was found in barley and wheat seedlings.NRA in seedlings sprayed with 100 μM 6-benzylaminopurine (BAP) for three subsequent days was increased in leaves and decreased in roots. These changes were further enhanced in seedlings grown in nutrient solution lacking nitrate:NRA in wheat and barley leaves was increased by 57% and 202%, respectively, in plants supplied with nitrate theNRA increase was not significant: in wheat and barley leaves by 22% and 9%, respectively. Similar effect of BAP and kinetin was found in kale stem parenchyma and cucumber cotyledons. The cytokinin kinetin or BAP alone increasedNRA about twice in kale and three times in cucumber. Addition of nitrate to the medium enhanced the effect of kinetin in kale discs, but the two effects were not additive. Additive effect of nitrate and BAP onNRA was found in cucumber cotyledons in light. In general NRA was more affected by cytokinins in intact seedlings of wheat and barley as compared to explanted tissue of kale and cucumber, and lack of nitrogen made their effect more expressive.  相似文献   

11.
Changes in fluxes of cytokinins in exudates transported viathe xylem from roots of rice plants cvs. Nipponbare (a standardJapanese cultivar) and Akenohoshi (a slowly senescing cultivar)were measured by mass spectrometry with deuterium-labeled standards.The fluxes of zeatin (Z), trans-ribosylzeatin (trans-RZ), N6-isopentenyladenine(iP), and "conjugated Z" (Z in the hydrolysates of highly polarfractions) decreased from heading to the late ripening stagein both cultivars. At the late ripening stage, iP and Z couldno longer be detected, while the flux of N6-isopentenyladenosine(iPA) increased slightly. In Akenohoshi, conjugated Z was thepredominant cytokinin from heading to the middle of the ripeningstage. The flux of each of the cytokinins in Akenohoshi washigher than that in Nipponbare at every time point, with theexception of the flux of iPA just after heading. The total concentrationof cytokinins in the xylem exudate of Akenohoshi was higherthan that of Nipponbare after the middle of ripening stage.The chlorophyll content of the third leaves, which were senescingrapidly, was significantly correlated with the flux of totalcytokinins per plant or per unit leaf area. These results suggestthat the larger amounts of cytokinins, in particular conjugatedZ, transported from the roots to the shoots caused the slowsenescence of leaves in Akenohoshi during the ripening stage. (Received May 9, 1994; Accepted July 1, 1995)  相似文献   

12.
Bernd M. Wagner  Erwin Beck 《Planta》1993,190(4):511-518
The effect of nitrogen on the cytokinin relations of Urtica dioica, the stinging nettle, has been investigated. The plants were grown in quartz sand and nutrient solutions providing levels of nitrate ranging from 1 to 22 mM. Nitrogen supply did not affect biomass production within the range of 3–15 mM NO 3 - . However, the shoot: root ratio of biomass was significantly higher at 15 mM (standard plants) than at 3 mM (low-nitrogen plants) nitrate supply. The cytokinin patterns of the roots, stems and adult, as well as meristematic leaves of plants grown at these two levels of nitrate supply, were determined by means of high-performance liquid chromatography (HPLC) and immunoassays. Enzyme-linked immunosorbent assays (ELISAs) for zeatin riboside, dihydrozeatin riboside, isopentenyladenosine, benzyladenosine and o-hydroxybenzyladenosine enabled the quantification of 17 cytokinins, 13 of which were found in the various tissues of Urtica. trans-Zeatin and its conjugates were the predominant cytokinins in all examined samples. While the free base trans-zeatin and its O-glucoside were the major cytokinins in adult leaves, trans-zeatin riboside was prominent in the other tissues of at least the standard plants. Glucosides of the trans-zeatin type cytokinins were present only in lower amounts. However, considerable amounts of a compound, tentatively identified as cis-zeatin riboside-O-glucoside, were found, particularly in roots and meristematic leaves. Comparatively high amounts of trans-zeatin nucleotide as well as isopentenyladenosine phosphate were also demonstrated in these tissues. Analysis of the root-pressure exudates similarly showed trans-zeatin riboside and, at a lower concentration, trans-zeatin to be the only substantial components. In the low-nitrogen plants, shortage of nitrogen was manifest only in the roots; the nitrogen contents of the shoots did not respond to the nitrogen supply. Likewise, the total content of cytokinins in the shoots of the low-nitrogen plants equaled that of the standard-plant shoots, while it was lower by about 25% in the roots of the low-nitrogen plants. In the latter, the amounts of cytokinins exuded via the root-pressure fluid were also approximately 25% lower. Since the levels of only the trans-zeatin cytokinins in the roots showed a linear correlation with the shoot-to-root ratios, these cytokinins may play an important role in biomass partitioning in Urtica dioica.Abbreviations DHZ dihydrozeatin - ELISA enzyme-linked immunosorbent assay - -G glucoside - HPLC high-performance liquid chromatography - 2iP isopentenyladenine - 2iPA isopentenyladenosine - -N nucleotide (ribotide) - -OG O-glucoside - -R riboside - S/R shoot-to-root (ratio) - Z zeatin This work was supported by the Deutsche Forschungsgemeinschaft within the scope of the SFB 137. The authors wish to thank Mrs. A. Fischbach for skilful technical assistence and Dr. Paul Ziegler (Lehrstuhl für Pflanzenphysiologie, University of Bayreuth, FRG) for linguistic suggestions.  相似文献   

13.
Introduction of the Agrobacterium ipt gene, coding for isopentenyl transferase, under control of a tetracycline (Tc)-inducible promoter results in a very specific system in which cytokinin levels can be changed. Because Tc belongs to the group of antibiotics that affect 70S ribosomes, it is important to study the effects of Tc on untransformed plants. Although 1 mg l−1 Tc was previously reported to have no physiological effects, this study revealed several changes in hydroponically grown wild-type Nicotiana tabacum L. cv. Wisconsin. Therefore, lower Tc concentrations (0.1 and 0.2 mg l−1 Tc) were used to induce ipt -transgenic (tr) plants. Upon induction, real-time PCR analysis showed that the ipt gene was expressed several times higher in roots of tr plants, but not in leaves. Consequently, cytokinin levels were also elevated to a large extent in roots. This resulted in a disturbance of the cytokinin to auxin ratio, leading to an obstructed root growth. In leaves, no significant increase in cytokinins was observed. However, phenotypic and physiological effects, which could be attributed to cytokinin, were apparent in leaves of ipt -induced trs: chlorophyll and carotenoid content were elevated and grana stacking increased. Our study demonstrates that caution has to be taken to determine the 'safe' concentration of inducers when using inducible gene-expression systems.  相似文献   

14.
The cytokinin content of Xanthium strumarium L. plants decreased markedly when they were exposed to short days (SD). There was a significant decrease in the content of the butanol-soluble cytokinins of the mature leaves after only 5 SD cycles, and after 10 SD there was no significant cytokinin activity in butanol extracts; the changes in the young leaves were less marked. Most of the cytokinin activity in mature leaves appears to be present in the aqueous fraction, whereas in young leaves most activity occurs in the butanol-soluble fraction. SD treated plants produced less root exudate than LD plants, but there were no significant differences in the amounts of cytokinin in the root exudates from LD and SD plants collected over an equivalent time period. The cytokinin levels of SD-induced leaves remained low even when transferred back to LD. The observed differences in cytokinin levels did not appear to be the result of photosynthetic differences. Exposure of detached leaves to LD or SD did not result in differences in cytokinin content. It is not clear whether the observed changes in cytokinin levels in the leaves under SD are involved in the flowering response, but they may be causally related to a reduced chlorophyll content observed in SD-induced leaves.  相似文献   

15.
16.
Contents of trans-zeatin riboside (ZR), dihydrozeatin riboside (DZR) and N6-(delta2-isopentenyl) adenosine (iPA) was quantified by an indirect ELISA using polyclonal antibodies, in the roots, xylem sap and leaves of pot grown sunflower plants subjected to water stress (RWC of leaves approximately 65 per cent). The delivery rates of all three cytokinins decreased significantly under stress. Cytokinin levels also decreased in roots and in leaves of stressed plants. Three-fold increase in cytokinin oxidase activity was observed in stressed roots after polymin P-ammonium sulphate fractionation. Further purification using Con A agarose resulted in elution of protein with cytokinin oxidase activity and was found to be 30 kDa protein on SDS-PAGE.  相似文献   

17.
Growth and glucuronidase (GUS) activity were followed in the cotyledons and rosette leaves of Arabidopsis thaliana (L.) Heynh (ecotype Wassilewskija) plants transformed with the GUS gene under the control of the cytokinin-dependent promoter of the ARR5 gene. The presence of active cytokinins in plant tissues was assessed from GUS activity. Plants were grown for three weeks on the nitrate-or ammonium-containing nutrient medium. In plants grown on ammonium nutrition, cotyledon and leaf growth was substantially suppressed as compared with plants feeding with nitrates. In correspondence with this growth inhibition, GUS activity was markedly lower in plant leaves grown on the ammonium-containing medium. This indicated a reduction in these leaves of active cytokinin forms capable of activation of the promoter for the ARR5 gene. On both nitrogen sources, GUS activity increased during leaf growth and dropped sharply after growth ceasing. This indicated that leaf growth depended on the cytokinin content in them. High GUS activity was detected in petioles and leaf conductive system, indicating leaf providing with cytokinins along the conductive vessels. A sharp drop in the GUS activity after leaf growth stoppage coincided in time with GUS activation in the leaf positioned above this leaf. This indicated possible cytokinin redistribution in the plant; its content could be a limiting factor for leaf growth. A higher growth rate in plants on nitrate nitrogen nutrition and corresponding high GUS activity in them are discussed in terms of cytokinin signaling role in leaf growth regulation mediated by nitrate.  相似文献   

18.
JARVIS  S. C. 《Annals of botany》1984,53(2):153-162
The absorption and distribution of Cu in red clover (Trifoliumpratense L.) were measured in plants grown in flowing solutionculture with Cu maintained throughout at 0.5 µg 1–1and N supplied either as nitrate or through symbiotic fixation.Although there was a decrease in Cu absorption, both with time,and with a depleted nitrate supply, it increased to its formerrate when nitrate was adjusted to 10 mg N 1–1 after aperiod of depletion. Differences in absorption between plantsdependent upon fixation and those supplied with nitrate wererelated to the slower initial growth of the plants fixing N.Considerable proportions (> 30 per cent) of the absorbedCu were retained by the roots. At the final harvest, and withthe exception of plants grown with nitrate adjusted to 0.1 mgN 1–1 after a period of depletion, the proportion of theCu retained was related to the concentration of N in the roots.The different N treatments produced differences in Cu concentrationin the shoots, and the effects were greater in the youngestfully expanded leaves than in older leaves. Trifolium pratense L., red clover, absorption, copper, flowing solution culture, nitrogen  相似文献   

19.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

20.
The growth of the primary leaves of Phaseolus vulgaris L. was enhanced greatly by decapitation of the rest of the shoot. This increased growth was manifested by an increase in leaf area, leaf weight, and in a higher synthesis of chlorophyll and soluble proteins. Within the roots and stems decapitation resulted in a detectable increase in the endogenous cytokinins within 2 days after the surgical treatment. In the primary leaves increased cytokinin levels were only detected after 16 days. At this time most of the recorded activity co-chromatographed with the cytokinin glucosides. When plants which were decapitated were left under normal growing conditions for 16 days and then transferred to continuous darkness for 8 days the senescence of the primary leaves of the decapitated plants, in which the cytokinins had increased, was delayed significantly when compared with that of the primary leaves of the intact plants. the significance of these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号