首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Root growth and water uptake during water deficit and recovering in wheat   总被引:31,自引:0,他引:31  
Asseng  S.  Ritchie  J.T.  Smucker  A.J.M.  Robertson  M.J. 《Plant and Soil》1998,201(2):265-273
Root growth and soil water content were measured in a field experiment with wheat subjected to two periods of water deficit. The first period was induced early in the season between the early vegetative stage (22 DAS) and late terminal spikelet (50 DAS), the second period at mid-season between terminal spikelet (42 DAS) and anthesis (74 DAS). Total root growth was reduced under water deficit by a reduction in the top 30 cm, while the root system continued to grow in the deeper soil profile between 30 and 60 cm. Shortly after rewatering, the growth pattern reverted to fastest root growth rates in the shallow soil layers. In relative terms, the total root system increased in relation to the above ground dry matter under water shortage. The early-, the mid-season water deficit treatments, and the control treatment had total root length of 27.4, 19.4 and 30.6 km m-2, respectively, about 2 wk before maturity. Evapotranspiration declined under water deficit, but water uptake in deeper layers increased. Water uptake per unit root length was reduced with water deficit and was still low shortly after rewatering. Remarkable was the increase in water uptake at 2–3 weeks after rewatering, both deficit treatments exceeded the control by almost 100%. This increase in water uptake followed the burst of new root growth in the upper regions of the soil. However, water uptake rates subsequently declined towards maturity, being between 0.15 L km-1 d-1 and 0.17 L km-1 d-1 for the early and mid-season water deficit treatments, slightly higher than the control, 0.12 L km-1 d-1. The results showed that the crop subjected to early water deficit could compensate for some of the reductions in root growth during subsequent rewatering, but the impact of the mid-season water deficit treatment was more severe and permanent.  相似文献   

2.
The aim of this work was to investigate differences among genotypes in post-anthesis root growth and distribution of modern UK winter wheat cultivars, and the effects of fungicide applications. Post-anthesis root growth of up to six cultivars of winter wheat (Triticum aestivum L.), given either one or three applications of fungicide, was studied in field experiments during two seasons. Total root mass remained unchanged between GS63 (anthesis) and GS85, but root length increased significantly from 14.7 to 31.4 km m−2 in one season. Overall, there was no evidence for a decline in either root mass or length during grain filling. Root mass as a proportion of total plant mass was about 0.05 at GS85. There were significant differences among cultivars in root length and mass especially below 30 cm. Malacca had the smallest root length and Savannah the largest, and Shamrock had a significantly larger root system below 40 cm in both seasons. Fungicide applied at ear emergence had no significant effect on root mass in either season but increased root length (P<0.01) in the more disease-prone season. By maintaining a green canopy for longer, fungicide applied at flag leaf emergence may have resulted in delayed senescence of the root system and contributed to the post-anthesis maintenance of root mass and length. Section Editor: R. W. Bell  相似文献   

3.
As the critical information to study flow transport in soil–plant systems, root distributions and root-water-uptake (RWU) patterns have been studied extensively. However, most root distribution data in the past were collected under surface irrigation. Less research has been conducted to characterize root distributions under sub-irrigation. The objectives of this study were to (1) test if the generalized function of normalized root length density (NRLD) in the literature was applicable to root distributions of winter wheat under natural sub-irrigation, which provides water from subsurface by capillary rise from the water table, and (2) estimate RWU distributions of winter wheat under natural sub-irrigation. Column experiments were conducted to study the distributions of root length density (RLD) and RWU of winter wheat (Triticum aestivum L. cv. Nongda 189) during a growing period of 57 days from planting to tillering stages under surface irrigation and natural sub-irrigation. Data of root distributions and soil water content were collected in the experiments with different treatments of irrigation levels. Results showed that the RLD distributions of winter wheat under both surface irrigation and natural sub-irrigation were of similar patterns. The NRLD distributions under sub-irrigation were adequately characterized by the generalized function. An inverse method was employed to estimate the average RWU rate distributions of winter wheat. In addition, based on the potential RWU coefficient and the NRLD function, a simple approach was developed to predict RWU rates at different depths. The predicted RWU rates had a good agreement with the estimated RWU rate distributions using the inverse method.Section editor: R. E. Munns  相似文献   

4.
Variation in nitrogen use efficiency among soft red winter wheat genotypes   总被引:5,自引:0,他引:5  
Summary Nitrogen use efficiency (NUE), defined as grain dry weight or grain nitrogen as a function of N supply, was evaluated in 25 soft red winter wheat genotypes for two years at one location. Significant genotypic variation was observed for NUE, nitrogen harvest index, and grain yield. Genotype x environment interaction for these traits was not significant. Several variables including N uptake efficiency (total plant N as a function of N supply), grain harvest index, and N concentration at maturity were evaluated for their role in determining differences in NUE. Nitrogen uptake efficiency accounted for 54% of the genotypic variation in NUE for yield and 72% of the genotypic variation in NUE for protein. A path coefficient analysis revealed that the direct effect of uptake efficiency on NUE was high relative to indirect effects.The investigation reported in this paper (No. 85-3-122) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with approval of the Director  相似文献   

5.
不同抗旱性冬小麦根系时空分布与产量的关系   总被引:2,自引:0,他引:2  
方燕  闵东红  高欣  王中华  王军  刘萍  刘霞 《生态学报》2019,39(8):2922-2934
为明确不同抗旱性冬小麦品种(Triticum aestivum L.)根系时空分布及其与产量的关系,以抗旱性品种长武134、长旱58和干旱敏感性品种小偃22、西农979为材料,采用根箱试验研究干旱胁迫和充分供水条件下4个品种在拔节期、开花期和成熟期根系总生物量、总根长密度、根系在表层(0—20 cm)和深层(20 cm以下)土壤中的垂直分布、动态变化及其对产量的影响。结果表明,干旱胁迫下抗旱性品种产量显著高于干旱敏感性品种,其中长旱58产量最高,西农979最低;充分供水条件下,西农979产量最高,长武134最低,长旱58与小偃22之间没有差异。相关分析表明,产量与各生育时期根系性状均有显著关系。多元逐步回归分析的结果显示,干旱胁迫和充分供水条件下,拔节期深层根生物量对产量有正效应,而成熟期总根长密度对产量表现为负效应。通径分析表明,干旱胁迫下,根系性状对产量的直接贡献大小为开花期总根长密度(|0.54|)拔节期深层根生物量(|0.36|)成熟期总根长密度(|-0.31|);充分供水时,成熟期总根长密度(|-1.56|)拔节期深层根生物量(|0.83|)。研究表明,减少成熟期总根长密度,增加拔节期深层根生物量对抗旱性及干旱敏感性冬小麦品种产量均有显著的正效应,增加开花期根长密度有利于提高抗旱性冬小麦产量。  相似文献   

6.
Spring wheat cv. ‘Gutha’ was grown in continuous wheat (W/W) and narrow-leafed lupin (L. angustifolius L. cv. Yandee)-wheat (L/W) rotation on a yellow earth over mottled clay (Arenic Fragiudult) in a mediterranean climate for two years. The first year had a higher than average rainfall with adequate soil water until anthesis. The second year was very dry (only 232 mm total rainfall) and soil water contents were low throughout the growing season. Nitrogen fertilizer (+N) treatments were included in both years. In the first year an adjacent experiment compared the effects of loosening a pronounced traffic pan which existed on the site (LS)versus unloosened (US). In the first year roots contained more dry matter than tops in the early vegetative stage in all crops and then declined exponentially to a ratio of 0.1 in the US and LS treatments. In the second year however, the decline was both linear and much less, so that root:shoot ratios at harvest were still between 0.4 and 0.8. There was a consistent trend in root:shoot ratios from the most favourable (LS) to least favourable (W/W-N) treatments over the combined two years’ data, and this was also found in grain yield, with a higher yield in year one from the LS than US, and the lowest yield in year two from the W/W-N treatment. The proportion of total biomass recovered from below ground was substantially higher than is commonly reported from studies carried out in temperate, high fertility soils, but probably still under-estimates of the true amount of dry matter in roots because of inadequacies of sampling, washing and storage techniques. Root length densities were much greater in the drier year, especially in the surface 0.1-m, and based on theoretical considerations, much greater than required for extraction of available water. The effect of environmental conditions on the relative size of cereal crop carbon sinks are discussed in relation to these results.  相似文献   

7.
8.
Seed size and weight are important criteria for determining seedling vigour and stand establishment. Evolution of seed dry weight of wheat (Triticum aestivum L.) during germination and early growth was examined because poor stands are often associated with the depletion and exhaustion of seed reserves. Two laboratory experiments were conducted on filter paper and in soil at three water potentials using wheat seeds. Seed, root, and shoot dry weights were recorded at approximately one-day intervals. Coleoptile and first leaf lengths were also measured at all sampling periods. Wheat seedlings grown on filter paper in the dark grew to a length of 90 to 100 mm with 50% of the initial seed weight remaining after eight days when the experiment was terminated. In soil, wheat seedlings grew 15 mm with 25% of the initial seed weight remaining. Seed reserves were depleted more quickly when the soil was wet because seedlings grew more quickly. There were significant and similar negative relationships between seed weight and coleoptile length of wheat seedlings grown on filter paper and in soil. There was no effect of soil water potential on the relationship between seed weight and shoot length. Therefore, it was concluded that poor wheat stands are not likely to occur due to depletion of seed reserves under field conditions without mechanical obstacles.  相似文献   

9.
Coelho  Eugenio F.  Or  Dani 《Plant and Soil》1999,206(2):123-136
Information on root distribution and uptake patterns is useful to better understand crop responses to irrigation and fertigation, especially with the limited wetted soil volumes which develop under drip irrigation. Plant water uptake patterns play an important role in the success of drip irrigation system design and management. Here the root systems of corn were characterized by their length density (RLD) and root water uptake (RWU). Comparisons were made between the spatial patterns of corn RWU and RLD under surface and subsurface drip irrigation in a silt loam soil, considering a drip line on a crop row and between crop rows. Water uptake distribution was measured with an array of TDR probes at high spatial and temporal resolution. Root length density was measured by sampling soil cores on a grid centered on crop row. Roots were separated and an estimation of root geometrical attributes was made using two different image analysis programs. Comparisons of these programs yielded nearly identical estimates of RLD. The spatial patterns of RWU and RLD distributions, respectively normalized to the total uptake and root length, were generally similar only for drip line on a crop row, but with some local variations between the two measures. Both RLD and RWU were adequately fitted with parametric models based on semi-lognormal and normal Gaussian bivariate density functions (Coelho and Or, 1996; Soil Sci. Soc. Am. J. 60, 1039–1049).  相似文献   

10.
Spring wheat was grown in the field under deficient and sufficient levels of soil K and with high and low supplies of fertiliser nitrogen. Measurements were made of K uptake, soil nutrient supply parameters, root growth and, in solution culture, root influx parameters. Mechanistic models predicted uptake reasonably well under K-deficient conditions, but over-predicted uptake, by as much as 4 times, under K-sufficient conditions. The over-prediction was apparently due to poor characterisation of plant demand.  相似文献   

11.
Rengel  Z.  Römheld  V. 《Plant and Soil》2000,222(1-2):25-34
Tolerance to Zn deficiency in wheat germplasm may be inversely related to uptake and transport of Fe to shoots. The present study examined eight bread (Triticum aestivum) and two durum (T. turgidum L. conv. durum) wheat genotypes for their capacity to take up and transport Fe when grown under either Fe or Zn deficiency. Bread wheat genotypes Aroona, Excalibur and Stilleto showed tolerance to Zn and Fe deficiency, while durum wheat genotypes are clearly less tolerant to either deficiency. Roots of bread wheats tolerant to Zn deficiency exuded more phytosiderophores than sensitive bread and durum genotypes. Greater amounts of phytosideophores were exuded by roots grown under Fe than Zn deficiency. A relatively poor relationship existed between phytosiderophore exudation or the Fe uptake rate and relative shoot growth under Fe deficiency. At advanced stages of Zn deficiency, genotypes tolerant to Zn deficiency (Aroona and Stilleto) had a greater rate of Fe uptake than other genotypes. Zinc deficiency depressed the rate of Fe transport to shoots in all genotypes in early stages, while advanced Zn deficiency had the opposite effect. Compared with Zn-sufficient plants, 17-day-old Zn-deficient plants of genotypes tolerant to Zn deficiency had a lower rate of Fe transport to shoots, while genotypes sensitive to Zn deficiency (Durati, Yallaroi) had the Fe transport rate increased by Zn deficiency. A proportion of total amount of Fe taken up that was transported to shoots increased with duration of either Fe or Zn deficiency. It is concluded that greater tolerance to Zn deficiency among wheat genotypes is associated with the increased exudation of phytosiderophores, an increased Fe uptake rate and decreased transport of Fe to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The objective of this study was to map QTLs for N uptake (NUP) in wheat, and to investigate factors influencing NUP. Two independent field trials with low N (LN) and high N (HN) treatments were conducted in the growing seasons of 2002–2003 (trial 1) and 2003–2004 (trial 2) to measure NUP per plant (N accumulated in the aerial part at maturity stage) of a doubled haploid (DH) population consisting of 120 DH lines derived from winter wheat varieties Hanxuan 10 and Lumai 14. A hydroponic culture with all nutrients supplied sufficiently was conducted to investigate shoot dry weight (SDW), root dry weight (RDW), tiller number (TN) and NUP (total plant N uptake) per plant of this mapping population at seedling stage. SDW, RDW, TN and NUP investigated in the hydroponic culture were significantly and positively correlated with each other, and with NUP under both LN and HN conditions in the field trials. Nine and eight QTLs for NUP were detected under LN and HN conditions in the field trials, respectively. Four to five QTLs for SDW, RDW, TN and NUP were detected in the hydroponic culture. One SDW QTL, three RDW QTLs, two TN QTLs detected in the hydroponic culture were linked with QTLs for NUP under LN or HN condition in the field trials. The positive correlation and genetic linkage for the traits between the field trials and the hydroponic culture demonstrated that greater seedling vigor of root and shoot is an important factor influencing N uptake in wheat. Diaoguo An and Junying Su: These authors contributed equally to this work. Section Editor: H.J. Kronzucker  相似文献   

13.
Summary Root-colonizing pseudomonads capable of inhibiting seedling winter wheat (Triticum aestivum L.) root growth in an agar seedling bioassay also significantly inhibited wheat root growth in vermiculite; however, the inhibitory trait is quite labile in laboratory culturing. The extent of inhibition in both the agar and vermiculite medium depended on inoculum level. These pseudomonads were found to produce a toxin capable of inhibiting growth ofEscherichia coli C-la andBacillus subtilis. Field isolates that strongly inhibit growth of indicator bacteria also inhibited root growth. Toxin production by the bacteria appeared necessary for inhibition of root growth and indicator bacteria as toxin-negative (TOX) mutants no longer inhibited either. Antibiosis towardsE. coli as well as wheat seedling root inhibition in agar was reversed by L-methionine, providing further evidence that a toxin, produced by these organisms, is involved in growth retardation.Contribution in cooperation with the College of Agric. Res. Center, Washington State Univ., Pullman, WA 99164. Scientific Paper No. 6837.  相似文献   

14.
Summary In winter wheat (Triticum aestivum L.), the development of a methodology to estimate genetic divergence between parental lines, when combined with knowledge of parental performance, could be beneficial in the prediction of bulk progeny performance. The objective of this study was to relate F2 heterosis for grain yield and its components in 116 crosses to two independent estimates of genetic divergence among 28 parental genotypes of diverse origins. Genetic divergence between parents was estimated from (a) pedigree relationships (coefficients of kinship) determined without experimentation, and (b) quantitative traits measured in two years of field experimentation in Kansas and North Carolina, USA. These distances, designated (1 -r) and G, respectively, provided ample differentiation among the parents. The 116 F2 bulks were evaluated at four locations in Kansas and North Carolina in one year. Significant rank correlations of 0.46 (P = 0.01) and 0.44 (P = 0.01) were observed between G and grain yield and kernel number heterosis, respectively. Although (1 -r) was poorly associated with grain yield heterosis, G and midparent performance combined to account for 50% of the variation in F2 yields among crosses when (1 -r) was above the median value, whereas they accounted for only 9% of the variation among crosses when (1-r) was below the median. Midparent and (1 -r) had equal effects on F2 grain yield (R 2= 0.40) when G was greater than the median value. A breeding strategy is proposed whereby parents are first selected on the basis of performance per se and, subsequently, crosses are made between genetically divergent parents that have both large quantitative (G) and pedigree divergence (1 -r).Paper No. 12162 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, and Contribution No. 89-396-J of the Kansas Agricultural Experiment Station, Manhattan, KS 66506  相似文献   

15.
Summary Rooting and water uptake patterns were determined for three maize (Zea mays L) varieties field-grown during the 1983/84 dry season under seven irrigation levels on a sandy loam soil. Roots were mainly concentrated in the top 22 cm due to a 40 cm thick compact gravelly layer occurring from about this depth in the profile. There were significant varietal differences, distinguished by root length density (RLD) and length/weight ratio (LAR) distributions at depth and at varying soil moisture regimes. These properties were related to water extraction patterns and grain yields. Yields obtained at adequate soil moisture were 6.9 tha−1 for TZESR-W (var 1), 4.2 t/ha for TZSR-W (var 2) and 3.7t ha−1 for FARZ-7 (var 3). These yeilds were respectively associated with maximum RLD of 2.56, 1.88 and 1.70 cm cm−3 and corresponding LWR of 2.64, 1.93 and 1.62 cm mg−1. Average seasonal water uptake was estimated at 4.2, 3.0 and 2.8 mm day−1 for var 1, 2 and 3, respectively. Better performance of var 1 was attributed to the development of a more active and deep rooting system.  相似文献   

16.
Two methods for estimating the size of the maize (Zea mays l.) root system from soil cores taken in the field were compared. The spatially weighed block method of estimation accounted for variation in root density by using 18 samples per plant which varied in distance from plant and soil depth. This method was compared to an estimation which averaged all of the 18 samples together. Both methods gave surprisingly similar estimates for total root growth. Increased root growth in the surface soil layers, due to tillage and N fertilization, did not impact on the estimation of total root growth. Total root length remained unchanged or increased with N fertilization, while root weight remained the same or decreased. Root mass per length decreased with N fertilization. The estimated size of the root system was used to calculate root:shoot weight ratios. The largest root:shoot ratio was found in the vegetative stage and decreased throughout the rest of the season. In this field experiment, the estimated size of the root system at 8 weeks after planting was not significantly different from the size at silking or harvest. Nitrogen fertilization significantly decreased the root:shoot weight ratio. However, tillage did not significantly change the ratio.  相似文献   

17.
Nitrogen uptake in relation to water availability in wheat   总被引:2,自引:0,他引:2  
Nitrogen uptake and distribution in wheat (Triticum aestivum L.) are dependent on environmental conditions and in particular on the water regime. Under Mediterranean conditions, where high water stress at the end of the crop cycle is frequent, nitrogen uptake can be reduced, affecting yield and quality of the grain. To disclose these relations a field experiment was carried out in Central Portugal. Wheat was grown on a clay soil (Vertisol) at three water treatments: rainfed (WO), with 80 mm of irrigation (W1) and with 50 mm and 70 mm irrigations (W2). All treatments received 50 kg ha–1 of N prior to sowing and were top-dressed with 140 kg ha–1 of N, splitted in two applications, Kjeldahl N was determined in green leaves (GL), yellow leaves (YL), stems (ST), chaff (CH) and grain (GR). N uptake after anthesis was 40% of the total in W2, but was not noticeable in the other two treatments. N concentrations in the total above-ground plant dry matter, and in both YL and ST were not very different according to treatment, but water availability increased grain-N concentration. It seems, therefore, that grain protein concentration and N uptake can be substantially increased by late irrigations.  相似文献   

18.
19.
Growth and nutrient utilization of alfalfa (Medicago sativa L. cv. Arc) and common bean (Phaseolus vulgaris L. cv. Carioca) were studied in an acid soil adjusted to eight levels of soil acidity by lime addition. Application of lime significantly (P<0.05) increased shoot and root growth for both species. However, common bean was far less sensitive to soil acidity than alfalfa. Maximum alfalfa growth was obtained at a soil pH of 5.8 and maximum bean growth was achieved at pH 5.0. Root and shoot growth of both legumes was positively correlated (P<0.01) with soil pH, exchangeable Ca and exchangeable Mg and negatively correlated (P<0.01) with soil exchangeable Al. Common bean had a lower internal P requirement for maximum growth and was more efficient than alfalfa in taking up Ca and Mg. These characteristics would contribute to the favorable growth of common bean in acid-infertile soils.  相似文献   

20.
Nutrient uptake relationship to root characteristics of rice   总被引:1,自引:0,他引:1  
Data on root parameters and distribution are important for an improved understanding of the factors influencing nutrient uptake by a crop. Therefore, a study was conducted on a Crowley silt loam at the Rice Research and Extension Center near Stuttgart, Arkansas to measure root growth and N, P and K uptake by three rice (Oryza sativa L.) cultivars at active tillering (36 days after emergence (DAE)), maximum tillering (41 DAE), 1.25 cm internode elongation (55 DAE), booting (77 DAE) and heading (88 DAE). Soil-root core samples were taken to a depth of 40 cm after plant samples were removed, sectioned into 5 cm intervals, roots were washed from soil and root lengths, dry weights and radii were measured. Root parameters were significantly affected by the soil depth × growth stage interaction. In addition, only root radius was affected by cultivar. At the 0- to 5-cm soil depth, root length density ranged from 38 to 93 cm cm-3 throughout the growing season and decreased with depth to about 2 cm cm-3 in the 35- to 40-cm depth increment. The increase in root length measured with each succeeding growth stage in each soil horizon also resulted in increased root surface area, hence providing more exposed area for nutrient uptake. About 90% of the total root length was found in the 0- to 20-cm soil depth throughout the season. Average root radius measured in the 0- to 5-cm and 35- to 40-cm depth increments ranged from 0.012 to 0.013 cm and 0.004 to 0.005 cm, respectively throughout the season. Total nutrient uptake by rice differed among cultivars only during vegetative growth. Differences in total nutrient uptake among the cultivars in the field appear to be related to absorption kinetics of the cultivars measured in a growth chamber study. Published with permission of the Arkansas Agricultural Experiment Station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号