首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated immunological changes in viral-infected white shrimp, Litopenaeus vannamei. White shrimp were infected with white spot syndrome virus (WSSV) or co-infected with WSSV and infectious hypodermal and hematopoietic necrosis virus (IHHNV) as detected by polymerase chain reaction (PCR). The complete (100%) mortality rate of shrimp was caused by viral infection due to immune parameters being suppressed including decreases in phenoloxidase activity, total hemocyte counts, differential hemocyte counts, and the gene expressions of prophenoloxidase and peroxinectin. In addition, increases in lipopolysaccharide and beta-1,3-glucan-binding protein of hemocytes and the hepatopancreas, and respiratory bursts per cell, and a decrease in superoxide dismutase were found in viral-infected shrimp, which may have been related to the defense against viral infection.  相似文献   

2.
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a single-stranded DNA virus that causes developmental and growth abnormalities in Pacific white shrimp Litopenaeus vannamei (also known as Penaeus vannamei). Nucleic acid based methods such as in situ hybridization (ISH) and PCR have been commonly used for IHHNV detection. Ramification amplification (RAM), an isothermal nucleic acid amplification approach, was used in this study to detect IHHNV in L. vannamei. RAM offers many advantages over PCR, including simple procedures and short detection time, and is labor-saving and cost-effective. RAM exponentially amplifies a circular oligonucleotide amplicon (C probe) after a target-specific ligation step through sequential primer extension and strand displacement processes. The conditions of an IHHNV RAM assay were optimized using artificial templates and targets prior to application. Using DNA of IHHNV-infected L. vannamei as targets, results revealed that RAM amplified target DNA with similar sensitivity as PCR. RAM offers competitive levels of speed, simplicity and sensitivity among various pathogen diagnostic methods.  相似文献   

3.
White spot syndrome virus (WSSV) is devastating shrimp aquaculture throughout the world, but despite its economic importance no work has been done on modeling epidemics of this pathogen. Therefore we developed a Reed-Frost epidemic model for WSSV in Litopenaeus vannamei. The model includes uninfected susceptible, latently infected, acutely infected, and dead infected shrimp. The source of new infections during an outbreak is considered to be dead infected shrimp. The transmission coefficient, patency coefficient, virulence coefficient, and removal coefficient (disappearance of dead infected shrimp) control the dynamics of the model. In addition, an explicit area parameter is included to help to clarify the distinction between density and absolute shrimp population size. An analysis of the model finds that as number of shrimp, initial dose, transmission coefficient, patency coefficient, virulence coefficient, or removal coefficient changes, the speed of the epidemic changes. The model predicts that a threshold density of susceptible shrimp exists below which an outbreak of WSSV will not occur. Only initial dose, transmission coefficient, removal coefficient, and area coefficient affect the predicted threshold density. Increases in the transmission coefficient reduce the threshold value, whereas increases in the other factors cause the threshold value to increase. Epidemic models may prove useful to the shrimp aquaculture industry by suggesting testable hypotheses, some of which may contribute to the eventual control of WSSV outbreaks.  相似文献   

4.
A total of 173 bacterial strains were isolated from different sources at different regions such as fermented foods, shrimp guts, sea water, mangrove water, and sediments. These bacteria were screened against white spot syndrome virus (WSSV) infection in Palaemon paucidens. Based on mortality, white spot level, and healthiness, three bacterial strains were selected and identified using 16S rRNA gene sequencing. These bacterial strains were Bacillus subtilis KA1, B. licheniformis KA2, and B. subtilis KA3. WSSV challenge test in pilot scale was conducted using Litopenaeus vannamei with B. subtilis KA1 and B. subtilis KA3. The survival ratio of shrimp was 0% for WSSV control after 17th days, 84% for B. subtilis KA1 plus WSSV after 26th days, and 28% for B. subtilis KA3 with WSSV after 26th days. B. subtilis KA1 showed good growth at 18–37 °C in with and without 3% NaCl, and therefore can be applied to aquaculture at low to high temperatures. B. subtilis KA1 produced protease and lipase which can increase digestion to shrimp; exhibited antibacterial activity against Vibrio parahaemolyticus; and significantly increased the survival of WSSV challenged shrimps.  相似文献   

5.
Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is widespread in cultured Penaeus monodon and P. vannamei in Thailand. It causes runt-deformity syndrome that is characterized by physical abnormalities and stunted growth in P. vannamei, but causes no apparent disease in P. monodon. In both species, the virus may produce Cowdry Type A inclusions in tissues of ectodermal and mesodermal origin, but these are common in P. vannamei and rare in P. monodon. The virus can be more easily detected in both species by IHHNV-specific PCR primers. By in situ hybridization (ISH) using specific IHHNV probes, fixed phagocytes associated with myocardial cells tended to show strong positive reactions in both shrimp species. Ovarian and neural tissue (neurons in the nerve ganglia and glial cells in the nerve cord) were ISH positive for IHHNV only in P. vannamei. By transmission electron microscopy, necrotic cells were found in the gills of IHHNV-infected P. vannamei, while paracrystalline arrays of virions and apoptotic cells rather than necrotic cells were found in the lymphoid organ of IHHNV-infected P. monodon. Thus, it is possible that apoptosis in P. monodon contributes to the absence of clinical disease from IHHNV. These findings reveal different responses to IHHNV infection by the 2 shrimp species. A curious feature of IHHNV infection in P. monodon was inconsistency in the comparative viral load amongst tissues of different specimens, as detected by both ISH and real-time PCR. This inconsistency in apparent tissue preference and the reasons for different cellular responses between the 2 shrimp species remain unexplained.  相似文献   

6.
Random amplified polymorphic DNA (RAPD) fingerprints of two shrimp populations (Litopenaeus stylirostris) were compared to find genetic marker(s) that may be associated with infectious hypodermal and hematopoietic necrosis virus (IHHNV) resistance or susceptibility. Of the 100 10-mer random primers and 100 intersimple-sequence repeat (ISSR) primers screened, five provided markers specific to the Super Shrimp population and three provided markers specific to the wild caught population. The two populations were further characterized for relative viral load (reported as cycle threshold, CT) using real-time quantitative PCR with primers specific to the IHHNV genome. The beta-actin gene was amplified to serve as a control for normalization of the IHHNV viral load. The mean viral load was significantly lower (C(T) = 34.58; equivalent to 3.3 x 10(1) copies of IHHNV genome/ng DNA) in Super Shrimp than in the wild caught population (CT = 23.49; equivalent to 4.2 x 10(4) copies/ng DNA; P < 0.001; CT values are inversely related to viral load). A preliminary prediction model was created with Classification and Regression Tree (CART) software (Salford Systems, San Diego, Calif.), where the resultant decision tree uses the presence or absence of seven RAPD markers as predictors of the relative viral load.  相似文献   

7.
The concept of polymicrobial disease is well accepted in human and veterinary medicine but has received very little attention in the field of aquaculture. This study was conducted to investigate the synergistic effect of white spot syndrome virus (WSSV) and Vibrio campbellii on development of disease in specific pathogen-free (SPF) shrimp Litopenaeus vannamei. The juvenile shrimp were first injected with WSSV at a dose of 30 SID(50) shrimp(-1) (SID(50) = shrimp infectious dose with 50% endpoint) and 24 h later with 10(6) colony-forming units (cfu) of V. campbellii shrimp(-1). Controls receiving just one of the pathogens or negative inocula were included. In the treatment with WSSV only, shrimp started to die at 48-108 h post injection (hpi) and cumulative mortality reached 100% at 268-336 hpi. In the treatment with only V. campbellii injection (10(6) cfu shrimp(-1)), cumulative mortality reached 16.7%. Shrimp in the dual treatment died very quickly after V. campbellii injection and 100% cumulative mortality was obtained at 72-96 hpi. When WSSV-injected shrimp were given sonicated V. campbellii instead of live V. campbellii, no synergistic effect was observed. Density of V. campbellii in the haemolymph of co-infected moribund shrimp collected 10 h after V. campbellii injection was significantly higher than in shrimp injected with V. campbellii only (P < 0.01). However, there was no difference in WSSV replication between shrimp inoculated with WSSV only compared with dually inoculated ones. This study revealed that prior infection with WSSV enhances the multiplication and disease inducing capacity of V. campbellii in shrimp.  相似文献   

8.
A real-time PCR method using a fluorogenic 5' nuclease assay and a PE Applied Biosystems GeneAmp 5700 sequence detector was developed to detect infectious hypodermal and hematopoietic necrosis virus (IHHNV) in penaeid shrimp. A pair of PCR primers to amplify an 81 bp DNA fragment and a fluorogenic probe (TaqMan probe) were selected from ORF1 (open reading frame 1) of the IHHNV genome. The primers and TaqMan probe used in this assay were shown to be specific for IHHNV and did not react with either hepatopancreatic parvovirus (HPV), white-spot syndrome virus (WSSV), or shrimp DNA. A plasmid, pIHHNV-P4, containing the target IHHNV sequence was constructed and used as a positive control. The concentration of pIHHNV-P4 was determined through spectrophotometric analysis and the plasmid was used for quantitative studies. This real-time PCR assay had a detection limit of 10 copies and a log-linear range up to 5 x 10(7) copies of IHHNV DNA. The assay was then used to quantify IHHNV in infected shrimp collected from 5 locations: Hawaii, Panama, Mexico, Guam, and the Philippines. The quantitative analysis showed that wild-caught, large juvenile Penaeus stylirostris collected from the Gulf of California (Mexico) in 1996 were naturally infected with IHHNV and contained up to 10(9) copies of IHHNV microg(-1) of DNA. Similar quantities of IHHNV were detected in hatchery-raised, small juvenile P. stylirostris collected from Guam in 1995 and in farm-raised, post-larval P. monodon from the Philippines in 1996. Laboratory-infected P. stylirostris contained approximately 10(8) copies of IHHNV 31 d after being fed with IHHNV-infected shrimp tissue. In contrast, individuals of Super Shrimp, a line of P. stylirostris selected for IHHNV resistance, showed no signs of infection 32 d after ingesting IHHNV-infected shrimp tissue. Laboratory-infected P. vannamei also contained approximately 10(8) copies of IHHNV 30 d after being fed infected shrimp tissue. A time-course study of IHHNV replication in juvenile P. vannamei showed that the doubling time in the exponential growth phase was approximately 22 h.  相似文献   

9.
The innate immunity and resistance against white spot syndrome virus (WSSV) in white shrimp Litopenaeus vannamei which received the Gracilaria tenuistipitata extract were examined. Shrimp immersed in seawater containing the extract at 0 (control), 400 and 600 mg L(-1) for 3 h were challenged with WSSV at 2 × 10(4) copies shrimp(-1). Shrimp not exposed to the extract and not received WSSV challenge served as unchallenged control. The survival rate of shrimp immersed in 400 mg L(-1) or 600 mg L(-1) extract was significantly higher than that of challenged control shrimp over 24-120 h. The haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, and lysozyme activity of shrimp immersed in 600 mg L(-1) extract were significantly higher than those of unchallenged control shrimp at 6, 6, 6, 6, and 6-24 h post-challenge. In another experiment, shrimp which had received 3 h immersion of 0, 400, 600 mg L(-1) extract were challenged with WSSV. The shrimp were then received a booster (3 h immersion in the same dose of the extract), and the immune parameters were examined at 12-120 h post-challenge. The immune parameters of shrimp immersed in 600 mg L(-1) extract, and then received a booster at 9, 21, and 45 h were significantly higher than those of unchallenged control shrimp at 12-48 h post-challenge. In conclusion, shrimp which had received the extract exhibited protection against WSSV as evidenced by the higher survival rate and higher values of immune parameters. Shrimp which had received the extract and infected by WSSV showed improved immunity when they received a booster at 9, 21, and 45 h post-WSSV challenge. The extract treatment caused less decrease in PO activity, and showed better performance of lysozyme activity and antioxidant response in WSSV-infected shrimp.  相似文献   

10.
11.
We have previously reported that white spot syndrome virus-infected Penaeus vannamei (also called Litopenaeus vannamei) maintained at 32 degrees C show higher survival rates and a significant increase in number of apoptotic cells when compared to infected shrimp kept at 26 degrees C. As apoptosis plays an important part in the antiviral response of invertebrates, we hypothesized that this process would reduce WSSV replication, allowing the shrimp to control the disease and survive. To test this hypothesis, shrimp were orally infected and maintained at either 26 degrees C (Group 1) or 32 degrees C (Group 2), DNA was extracted from haemolymph collected at various times from 6 to 216 h post-infection, and the number of viral units was quantified by real time PCR using SYBR Green. In parallel, histological examination was carried out to confirm the WSSV infection and to rule out concomitant diseases. Linear regression of real time PCR units (rtPCRU) of WSSV from Group 1 showed a significant increase with time post-infection (r2 = 0.7383; p < 0.001). Conversely, there was no increase in rtPCRU with time post-infection in Group 2 (r2 = 0.142), indicating that hyperthermia inhibited, either directly or indirectly, viral replication. In addition, comparison between the groups showed no difference in WSSV rtPCRU up to 48 h post-infection. After 72 h, shrimp from Group 1 had a significantly higher viral rtPCRU (ANOVA, p < 0.001). We conclude that hyperthermia-associated WSSV rtPCRU reduction could reflect either an increase in the shrimp antiviral response, or a direct negative effect on viral replication, or both.  相似文献   

12.
13.
White spot syndrome virus (WSSV) is a devastating pathogen in shrimp aquaculture. Standardized challenge procedures using a known amount of infectious virus would assist in evaluating strategies to reduce its impact. In this study, the shrimp infectious dose 50% endpoint (SID50 ml(-1)) of a Thai isolate of WSSV was determined by intramuscular inoculation (i.m.) in 60 and 135 d old specific pathogen-free (SPF) Litopenaeus vannamei using indirect immunofluorescence (IIF) and 1-step polymerase chain reaction (PCR). Also, the lethal dose 50% endpoint (LD50 ml(-1)) was determined from the proportion of dead shrimp. The median virus infection titers in 60 and 135 d old juveniles were 10(6.8) and 10(6.5) SID50 ml(-1), respectively. These titers were not significantly different (p > or = 0.05). The titration of the WSSV stock by oral intubation in 80 d old juveniles resulted in approximately 10-fold reduction in virus titer compared to i.m. inoculation. This lower titer is probably the result of physical and chemical barriers in the digestive tract of shrimp that hinder WSSV infectivity. The titers determined by infection were identical to the titers determined by mortality in all experiments using both i.m. and oral routes at 120 h post inoculation (hpi), indicating that every infected shrimp died. The determination of WSSV titers for dilutions administered by i.m. and oral routes constitutes the first step towards the standardization of challenge procedures to evaluate strategies to reduce WSSV infection.  相似文献   

14.
White spot syndrome virus (WSSV) causes disease and mortality in cultured and wild shrimp. A standardized WSSV oral inoculation procedure was used in specific pathogen-free (SPF) Litopenaeus vannamei (also called Penaeus vannamei) to determine the primary sites of replication (portal of entry), to analyze the viral spread and to propose the cause of death. Shrimp were inoculated orally with a low (10(1.5) shrimp infectious dose 50% endpoint [SID50]) or a high (10(4) SID50) dose. Per dose, 6 shrimp were collected at 0, 6, 12, 18, 24, 36, 48 and 60 h post inoculation (hpi). WSSV-infected cells were located in tissues by immunohistochemistry and in hemolymph by indirect immunofluorescence. Cell-free hemolymph was examined for WSSV DNA using 1-step PCR. Tissues and cell-free hemolymph were first positive at 18 hpi (low dose) or at 12 hpi (high dose). With the 2 doses, primary replication was found in cells of the foregut and gills. The antennal gland was an additional primary replication site at the high dose. WSSV-infected cells were found in the hemolymph starting from 36 hpi. At 60 hpi, the percentage of WSSV-infected cells was 36 for the epithelial cells of the foregut and 27 for the epithelial cells of the integument; the number of WSSV-infected cells per mm2 was 98 for the gills, 26 for the antennal gland, 78 for the hematopoietic tissue and 49 for the lymphoid organ. Areas of necrosis were observed in infected tissues starting from 48 hpi (low dose) or 36 hpi (high dose). Since the foregut, gills, antennal gland and integument are essential for the maintenance of shrimp homeostasis, it is likely that WSSV infection leads to death due to their dysfunction.  相似文献   

15.
Nucleotide sequence variations of a 2.9 kb fragment of infectious hypodermal and hematopoietic necrosis virus (IHHNV) isolated from samples of Penaeus monodon were determined and compared with an isolate from Hawaii. The infection characteristics of these isolates were examined by histology, in situ hybridization, and laboratory challenge studies with P. vannamei. Isolates of IHHNV were obtained from samples collected from the SE Asia region (the Philippines, Thailand, and Taiwan). Isolates of putative IHHNV were obtained from African samples (Tanzania, Madagascar, and Mauritius). The Philippine isolate had a very high nucleotide sequence identity (99.8%) to Hawaii IHHNV. The Thailand isolate showed a slightly lower identity (96.2%). The putative IHHNV sequences collected from Tanzania and Madagascar showed greater divergence from Hawaii IHHNV, 8.2% difference for Tanzania and 14.1% difference for Madagascar. A phylogenetic analysis showed that the Philippine IHHNV clustered with IHHNV found in the western hemisphere. This supports the theory that the Philippines was the origin of IHHNV that was first detected in Hawaii. In the laboratory infection study, both the Philippine and Thailand IHHNV were passed into P. vannamei, and the infected shrimp did not suffer any mortalities. In another laboratory infection, P. vannamei injected with a tissue homogenate of P. monodon from Madagascar, which tested positive for IHHNV by PCR, did not demonstrate IHHNV infection, suggesting that this putative IHHNV is not infectious to P. vannamei.  相似文献   

16.
Fatty acid synthase (FAS) in animal tissues consists of two identical monomers and is known to be a complex multi-functional enzyme that plays an important role in energy homeostasis. However, there are few reports of studies focused on the relationship between FAS and virus infection in invertebrates. In the present study, we cloned the FAS gene from an economically important invertebrate, the Pacific white shrimp Litopenaeus vannamei. The full-length FAS cDNA is 8268 bp, including a 5'-terminal untranslated region of 137 bp, a 3'-terminal untranslated region of 601 bp and an open reading frame of 7530 bp. FAS cDNA encodes a polypeptide of 2509 amino acid residues that contains a typical β-ketoacyl synthase (KS) domain at the N-terminus, next to a malonyl/acetyltransferase (MAT) domain, a dehydrase domain, an enoyl reductase domain, a ketoacyl reductase domain, a phosphopantetheine attachment site domain and a thioesterase domain at the C-terminus. Quantitative real-time RT-PCR revealed the up-regulated expression of FAS in L. vannamei hepatopancreas and muscle after white spot syndrome virus (WSSV) infection. The expression of FAS in muscle was 13.03-fold greater than that in the control (p<0.05) and 2.93-fold greater in hepatopancreas (p>0.05). Meanwhile, expression of the fatty acid-binding protein (FABP), another important factor in lipid metabolism, was increased in muscle to 19.20-fold greater than that in the control (p<0.05) but only 0.76-fold in hepatopancreas (p>0.05). These results implied that WSSV infected body surface tissues, but there was very little infection of internal organs. We suggest that the increase of FAS expression is induced in WSSV-infected shrimps, and the virus changes the lipid metabolism of the host, which directly affects virus assembly or defense against virus infection.  相似文献   

17.
We developed a PCR assay that can detect infectious hypodermal and hematopoietic necrosis virus (IHHNV) but that does not react with IHHNV-related sequences in the genome of Penaeus monodon from Africa and Australia. IHHNV is a single-stranded DNA virus that has caused severe mortality and stunted growth in penaeid shrimp. Recently, IHHNV-related sequences were found in the genome of some stocks of P. monodon from Africa and Australia. These virus-related sequences have a high degree of similarity (86 and 92% identities in nucleotide sequence) to the viral genome, which has often generated false-positive reactions during PCR screening of these stocks. For this assay, a pair of IHHNV primers (IHHNV309F/R) was selected. The sequences of these primers match (100% of nucleotides) the target sequence in IHHNV, but mismatch 9 or 12 nucleotides of the genomic IHHNV-related sequences. This PCR assay was tested with various IHHNV isolates and with a number of samples of shrimp DNA that contained IHHNV-related sequences. This assay can reliably distinguish IHHNV DNA from shrimp DNA: it only detects IHHNV. Also, this pair of primers was included in a duplex PCR to detect IHHNV and simultaneously determine the presence of an IHHNV-related sequence. Using these primers, the PCR assay has a sensitivity equivalent to a PCR assay commonly used for detecting IHHNV in Litopenaeus vannamei, and can be used for routine detection.  相似文献   

18.
19.
20.
The haemogram, phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity, lysozyme activity, and the mitotic index of haematopoietic tissue (HPT) were examined after the white shrimp Litopenaeus vannamei had been fed diets containing the hot-water extract of Gracilaria tenuistipitata at 0 (control), 0.5, 1.0, and 2.0 g kg(-1) for 7-35 days. Results indicated that these parameters directly increased with the amount of extract and time, but slightly decreased after 35 days. RBs, SOD activity, and GPx activity reached the highest levels after 14 days, whereas PO and lysozyme activities reached the highest levels after 28 days. In a separate experiment, white shrimp L. vannamei, which had been fed diets containing the extract for 14 days, were challenged with Vibrio alginolyticus at 2 × 10(6) cfu shrimp(-1) and white spot syndrome virus (WSSV) at 1 × 10(3) copies shrimp(-1), and then placed in seawater. The survival rate of shrimp fed the extract-containing diets was significantly higher than that of shrimp fed the control diet at 72-144 h post-challenge. We concluded that dietary administration of the G. tenuistipitata extract at ≤1.0 g kg(-1) could enhance the innate immunity within 14 days as evidenced by the increases in immune parameters and mitotic index of HPT in shrimp and their enhanced resistance against V. alginolyticus and WSSV infections. Shrimp fed the extract-containing diets showed a higher and continuous increase in the humoral response indicating its persistent role in innate immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号