首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observation and quantification of the catalytic subunit C of cyclic AMP-dependent protein kinases by immuno-gold electron microscopy suggested a high concentration of cyclic AMP-dependent protein kinases in mitochondria from liver, kidney, heart and skeletal muscle, pancreas, parotid gland and brain cells. The position of gold particles pointed to a localization in the inner membrane/matrix space. A similar distribution was obtained by immunolocalization of the cyclic AMP-dependent protein kinase regulatory subunits RI and RII in liver, pancreas and heart cells. The results indicated the presence of both the type I and the type II cyclic AMP-dependent protein kinases in mitochondria of hepatocytes, and the preferential occurrence of the type I protein kinase in mitochondria from exocrine pancreas and heart muscle. The immunocytochemical results were confirmed by immunochemical determination of cyclic AMP-dependent protein kinase subunits in fractionated tissues. Determinations by e.l.i.s.a. of the C-subunit in parotid gland cell fractions indicated about a 4-fold higher concentration of C-subunit in the mitochondria than in a crude 1200 g supernatant. Immunoblot analysis of subfractions from liver mitochondria supported the localization in situ of cyclic AMP-dependent protein kinases in the inner membrane/matrix space and suggested that the type I enzyme is anchored by its regulatory subunit to the inner membrane. In accordance with the immunoblot data, the specific activity of cyclic AMP-dependent protein kinase measured in the matrix fraction was about twice that measured in whole mitochondria. These findings indicate the importance of cyclic AMP-dependent protein kinases in the regulation of mitochondrial functions.  相似文献   

2.
Partial hepatectomy (HPX), which proliferatively activates the remaining liver cells, triggered two transient prereplicative surges in the total activities of cytoplasmic types I and II cyclic AMP-dependent protein kinase holoenzymes, and of nuclear catalytic subunits from cyclic AMP-dependent protein kinases. It also induced a transient prereplicative increase in the activities of a nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating protein kinase, and a nuclear poly(L-lysine)-phosphorylating, 105 kDa protein kinase. Thyroparathyroidectomy (TPTX) delayed and reduced the first surge and completely eliminated the second surge of both of the cytoplasmic cyclic AMP-dependent protein kinases, reduced the rises in the activity of nuclear catalytic subunits, and completely eliminated the surge of the Ca2+-calmodulin-stimulable protein kinase, but did not affect the surge of the nuclear 105 kDa protein kinase. The impairment of the responses of the two cyclic AMP-dependent protein kinases to HPX in TPTX rats was not accompanied by a rise in the level of heat-stable inhibitor of cyclic AMP-dependent protein kinase activity. One intraperitoneal injection of 1,25-dihydroxyvitamin D1 into TPTX rats immediately after HPX completely restored the post-HPX surges in the activity of type I cyclic AMP-dependent protein kinase, but the hormone, even in high doses, had little or not effect on the type II isoenzyme or the nuclear Ca2+-calmodulin-stimulable, protamine-phosphorylating enzyme.  相似文献   

3.
The protein-bound cyclic AMP and the activity of cytosolic protein kinases in the presence and absence of cyclic AMP were determined in rat liver up to 2h after injection of glucagon. On the basis of the different salt-sensitivities of the activated cyclic AMP-dependent proteinkinases I and II, an activation of protein kinase II restricted to the high cyclic AMP concentrations present in the first 30 min after hormone injection was found. Essentially the same result was obtained by chromatographic analysis on DEAE-cellulose of liver cytosol from untreated rats and from rats killed at 2 and 60 min after glucagon injection. Protein kinase II activation was only detected at 2 min after injection. In contrast, the cyclic AMP-dependent protein kinase I was found to be nearly totally activated at 2 min and to be still almost as active at 60 min after the hormone stimulus, whereas the amount of bound cyclic AMP and the activation of total cytosolic protein kinases had fallen to two-thirds of their maximal values during this time period. A third cyclic AMP-independent protein kinase, which co-chromatographed with protein kinase type II, could be clearly distinguished from the two cyclic AMP-dependent kinases by use of the heat-stable inhibitor from bovine muscle, which totally inhibited the cyclic AMP-dependent enzymes, but stimulated the cyclic AMP-independent protein kinase.  相似文献   

4.
5.
Previous reports from this laboratory and others have established that both the rabbit and human erythrocyte membranes contain multiple protein kinase and phosphate acceptor activities. We now report that these membranes also contain phosphoryl acceptor sites for the soluble cyclic AMP-dependent and -independent protein kinases from rabbit erythrocytes. The rabbit erythrocyte membrane, which does not contain a cyclic AMP-dependent protein kinase, has at least four polypeptides (Bands 2.1, 2.3, 4.5, and 4.8) which are phosphorylated in the presence of the soluble cyclic AMP-dependent protein kinases I, IIa, and IIb isolated from rabbit erythrocyte lysates. The resulting phosphoprotein profile is very similar to that obtained for the cyclic AMP-mediated autophosphorylation of human erythrocyte membranes. The activities of the soluble cyclic AMP-dependent protein kinases toward the membranes have been studied at several pH values. Although the substrate specificity of the three kinases is similar, polypeptide 2.3 appears to be phosphorylated to a greater extent by kinase IIa than by I or IIb. This occurs at all pH values studied. Also apparent is that the pH profile for membrane phosphorylation is different from that of histone phosphorylation. The phosphorylation of membrane proteins can also be catalyzed by the soluble erythrocyte casein kinases. These enzymes are not regulated by cyclic nucleotides and can use either ATP or GTP as their phosphoryl donor. Polypeptides 2.1, 2.9, 4.1, 4.5, 4.8, and 5 of both human and rabbit erythrocyte membranes are phosphorylated in the presence of GTP and the casein kinases. This reaction is optimal at pH 7.5. Experiments were performed to determine whether the phosphorylation of the membranes by the soluble and membrane-bound kinases is additive or exclusive. Our results indicate that after maximal autophosphorylation of the erythrocyte membranes, phosphoryl acceptor sites are available to the soluble cyclic AMP-dependent and -independent protein kinases. Furthermore, after maximal phosphorylation of the membranes with one type of soluble kinase, further 32P incorporation can occur as a result of exposure to the other type of soluble kinase.  相似文献   

6.
The effects of diamide on protein kinases isolated from bovine thyroid were studied. Cyclic AMP-dependent protein kinase activity was directly, rapidly, and reversibly inhibited by diamide. This inhibition was non-competitive with respect to ATP or histone and could be prevented by thiol-reducing agents. However, a cyclic nucleotide-independent thyroid protein kinase was not affected. Our data indicate that diamide specifically inhibits protein kinases which are cyclic AMP-dependent.  相似文献   

7.
Nuclear protein kinases   总被引:8,自引:0,他引:8  
  相似文献   

8.
Stimulation of growth of the rat parotid gland by repeated injection of the beta-agonist isoprenaline led to a significant decrease in the activity of cyclic AMP-dependent protein kinases. Immunochemical quantification of the catalytic (C) and regulatory (RI and RII) subunits of the cyclic AMP-dependent protein kinases type I and type II revealed a loss of 65% of the immunochemically measurable amount of catalytic subunit C. The amount of the regulatory subunits, however, remained constant. The observed decrease in C-subunit was not due to a translocation of the molecule to cellular membranes or to an inhibiting effect of the heat-stable inhibitor of cyclic AMP-dependent protein kinases. A selective decrease in only the C-subunit was also observed after a brief exposure to isoprenaline leading to the stimulation of DNA synthesis. Under these conditions, the decrease was observed at the onset of DNA synthesis (17 h after injection), but not at the the time of an earlier small cyclic AMP peak (13 h after injection) or at the time of maximal DNA synthesis (24 h after injection). The results indicate that the amount of the catalytic subunit of cyclic AMP-dependent protein kinases can be regulated independently from that of the regulatory subunits. The time-limited occurrence of the specific change in the amount of the C-subunit suggests that such a regulation is of physiological significance and that it may participate in cyclic AMP-mediated events involved in the control of cellular proliferation.  相似文献   

9.
Protein phosphorylation in cultured endothelial cells   总被引:4,自引:0,他引:4  
We have investigated the protein phosphorylation systems present in cultured bovine aortic and pulmonary artery endothelial cells. The cells contain cyclic AMP-dependent protein kinase, three calcium/calmodulin-dependent protein kinases, protein kinase C, and at least one tyrosine kinase. No cyclic GMP-dependent protein kinase activity was found. The cells also contained numerous substrates for cyclic AMP-dependent protein kinase and protein kinase C. Fewer substrates were found for the calcium/calmodulin-dependent protein kinases. There was little difference between either protein kinase activities or substrates when pulmonary artery endothelium was compared to aortic endothelium grown under similar culture conditions. It is likely that these various protein kinases and their respective substrate proteins are involved in mediating several of the actions of the hormones and drugs which affect the vascular endothelium.  相似文献   

10.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

11.
Cyclic nucleotides and cyclic nucleotide-dependent protein kinases have been implicated in the regulation of cell motility and division, processes that depend on the cell cytoskeleton. To determine whether cyclic nucleotides or their kinases are physically associated with the cytoskeleton during cell division, fluorescently labeled antibodies directed against cyclic AMP, cyclic GMP, and the cyclic nucleotide- dpendent protein kinases were used to localize these molecules in mitotic PtK1 cells. Both the cyclic GMP-dependent protein kinase and the type II regulatory subunit of the cyclic AMP-dependent protein kinase were localized on the mitotic spindle. Throughout mitosis, their distribution closely resembled that of tubulin. Antibodies to cyclic AMP, cyclic GMP, and the type I regulatory and catalytic subunits of the cyclic AMP-dependent protein kinase did not label the mitotic apparatus. The association between specific components of the cyclic neucleotide system and the mitotic spindle suggests that cyclic nucleotide-dependent phosphorylation of spindle proteins, such as those of microtubules, may play a fundamental role in the regulation of spindle assembly and chromosome motion.  相似文献   

12.
Cyclic AMP-dependent protein kinases (EC 2.7.1.37; ATP:protein phosphotransferase) in the human diploid fibroblast WI-38 and an SV40-transformant WI-38-VA13-2RA (VA13) have been compared on the basis of their concentrations in cells, isoenzyme composition and susceptibility to hormonal activation. In high population density cultures, total soluble cyclic AMP-dependent kinase activities measured with histone were essentially the same in WI-38 and VA13. Two soluble protein kinase forms separated by chromatography on DEAE-cellulose were present in both cell lines. The concentration of cyclic AMP required for half-maximal activation of both enzyme forms was 10-30 nM. Overall kinase stimulation was greater for the Peak I enzymes. Kinase activation induced in the presence of 0.5 M KCl was more rapid and complete for the Peak I enzymes. Under conditions which elevated the concentration of cyclic AMP in WI-38 and VA13 cells the activities of the soluble histone kinases were increased. Incubation of the cells with either of 5.7 micronM prostaglandin E1 or 1 micronM isopropylnorepinephrine induced complete activation of the cyclic AMP-dependent histone kinases within 5 min and maintained the effect for 20 min. When intracellular cyclic AMP levels were raised by prostaglandin E1, activation of glycogen phosphorylase (assayed-AMP) suggested that this enzyme cascade involving cyclic AMP-dependent protein kinase(s) was intact and responsive in both cell lines.  相似文献   

13.
Chinese hamster ovary cells exhibit several characteristic morphological and physiological responses upon treatment with agents which increase the intracellular level of adenosine 3':5'-phosphate (cyclic AMP). To better understand the mechanism of these cyclic AMP-mediated responses, we separated two cyclic AMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) (protein kinase I and protein kinase II) from the cytosol of Chinese hamster ovary cells by DEAE-cellulose chromatography and studied their properties. Protein kinase I is eluted at a lower salt concentration than protein kinase II and is stimulable to 10 times its basal catalytic activity, while protein kinase II is stimulable only 2-fold. Both kinases are completely dissociated by cyclic AMP and inhibited by specific cyclic AMP-dependent protein kinase inhibitor. They have similar Km values for magnesium (approximately 1 mM), cyclic AMP (approximately 60 nM), and ATP (approximately 0.1 mM), and the dissociation constant (Kdis) for cyclic AMP (approximately 13 nM) is the same for both enzymes. However, they appear to have different substrate preferences and cyclic AMP-binding properties in that cyclic AMP bound to protein kinase II exchanges readily with free cyclic AMP, while that bound to protein kinase I is not exchangeable. The native enzymes have different sedimentation coefficients (6.4 S for protein kinase I and 4.8 S for protein kinase II), whereas those of the activated enzymes are the same (2.9--3.0 S). It appears that the two cyclic AMP-dependent protein kinases which differ from each other in their regulatory subunits may play different roles in the mediation of cyclic AMP action in Chinese hamster ovary cells.  相似文献   

14.
Soluble extracts from mouse epidermis contained both cyclic AMP-dependent and independent protein kinases which could be separated by DEAE-Sephadex chromatography. The cyclic AMP-dependent histone kinase activity was inhibited by millimolar concentrations of the polyamines putrescine, spermidine and spermine. Similar concentrations of polyamines stimulated the cyclic AMP-independent phosphorylation of casein. The polyamines did not inhibit cyclic AMP binding by soluble epidermal extracts.  相似文献   

15.
Cyclic AMP-dependent protein kinases I and II, partially purified from rat liver cytosol, were inhibited 50% by 40 microM hemin and 100 microM hemin, respectively. With the purified catalytic subunit of cyclic AMP-dependent protein kinase, hemin caused non-competitive inhibition with respect to the peptide substrate and mixed inhibition with respect to ATP. Hemin also inhibited purified phosphorylase b kinase, indicating that hemin concentrations above 10 microM markedly inhibit multiple protein kinases. In isolated intact hepatocytes, hemin inhibited the glucagon-dependent activation of cyclic AMP-dependent protein kinases and the activation of glycogen phosphorylase. For both effects, high heme concentrations (40-60 microM) were required for 50% inhibition. Similar high levels of exogenous hemin inhibited total hepatocyte protein synthesis. By contrast, 5 microM hemin or less was sufficient to raise intracellular heme levels, as indicated by the relative heme-saturation of tryptophan oxygenase in hepatocytes. Hemin, 5 microM, completely repressed induction of 5-aminolevulinate synthase by dexamethasone in hepatocyte primary cultures. Such repression is unlikely to be mediated by inhibition of protein kinases.  相似文献   

16.
An antiserum against the catalytic subunit C of cyclic AMP-dependent protein kinase, isolated from bovine heart type II protein kinase, was produced in rabbits. Reaction of the catalytic subunit with antiserum and separation of the immunoglobulin G fraction by Protein A-Sepharose quantitatively removed the enzyme from solutions. Comparative immunotitration of protein kinases showed that the amount of antiserum required to eliminate 50% of the enzymic activity was identical for pure catalytic subunit, and for holoenzymes type I and type II. The reactivity of the holoenzymes with the antiserum was identical in the absence or the presence of dissociating concentrations of cyclic AMP. Most of the holoenzyme (type II) remains intact when bound to the antibodies as shown by quantification of the regulatory subunit in the supernatant of the immunoprecipitate. Titration with the antibodies also revealed the presence of a cyclic AMP-independent histone kinase in bovine heart protein kinase I preparations obtained by DEAE-cellulose chromatography. Cyclic AMP-dependent protein kinase purified from the particulate fraction of bovine heart reacted with the antiserum to the same degree as the soluble enzyme, whereas two cyclic AMP-independent kinases separated from the particle fraction neither reacted with the antiserum nor influenced the reaction of the antibodies with the cyclic AMP-dependent protein kinase. Immunotitration of the protein kinase catalytic subunit C from rat liver revealed that the antibodies had rather similar reactivities towards the rat liver and the bovine heart enzyme. This points to a relatively high degree of homology of the catalytic subunit in mammalian tissues and species. Broad applicability of the antiserum to problems related to cyclic AMP-dependent protein kinases is thus indicated.  相似文献   

17.
The plasma membrane of 3T3 cells contains at least two different endogenous cyclic AMP-dependent protein kinase systems. One catalyzes the phosphorylation of endogenous protein substrates, i.e., PP24 and PP14, whereas the other catalyzes the phosphorylation of exogenous substrates. In this paper the topography of these cyclic AMP-dependent phosphorylation systems is described. The results show that the kinases which phosphorylate only exogenous substrates are primarily localized to the outer plasma membrane surface whereas the endogenous cyclic AMP-dependent protein kinase and its two endogenous substrates are localized to the cytoplasmic plasma membrane surface. The data also establish that neither the cytoplasmically orientated kinase nor its substrates has a transmembrane orientation even though factors acting on the outer plasma membrane can affect these proteins. This suggests that functional modulation of the cytoplasmically localized cyclic AMP-dependent phosphorylation system can be mediated by a transmembrane regulatory mechanism. The importance of determining the topography of such plasma membrane phosphorylation systems is emphasized by recent studies which show that neoplastic transformation can be mediated at least in part by protein kinases and/or phosphoproteins which are localized on the cytoplasmic surface of the plasma membrane.  相似文献   

18.
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis the gels were incubated with histone and [gamma-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 microgram per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cytosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in Type II activity appears to be an early event in permitting cells to leave G1 and resume growth.  相似文献   

19.
This study reports a partial characterization of a 15,000 dalton (15 kDa) proteolipid present in rat skeletal muscle sarcolemma. The proteolipid is phosphorylated by both cyclic AMP-dependent and calcium/phospholipid-dependent protein kinases, displays an isoelectric point (pI) of 5.9, and can be extracted from sarcolemma by acidified chloroform/methanol (2:1) or non-ionic detergents. Phosphoamino acid analysis and tryptic fingerprinting of the phosphorylated proteolipid indicate that both cyclic AMP- and calcium/phospholipid-dependent protein kinases predominantly phosphorylate serine residue(s) on a single tryptic peptide. Additivity experiments and thermolytic fingerprinting demonstrate a minimum of two distinct phosphorylation sites on the proteolipid, the phosphorylation of which is independently catalyzed by cyclic AMP-dependent and calcium/phospholipid-dependent protein kinases in vitro. This sarcolemma proteolipid, which appears to be identified to a sarcolemma protein previously reported to be phosphorylated upon addition of insulin in a GTP-dependent manner (Walaas, O., Walaas, E., Rye-Alertsen, A. and Horn, R.S. (1979) Mol. Cell. Endocrinol. 16, 45-55), therefore represents a possible membrane target for those neuronal and hormonal stimuli which can regulate cyclic AMP-dependent or calcium/phospholipid-dependent protein kinase activities in skeletal muscle.  相似文献   

20.
Since phosphorylation of chromosomal proteins by cyclic AMP-dependent protein kinases (EC 2.7.1.37) enhances template activity of adrenal medulla chromatin (9), we have studied the properties and regulation of protein kinases isolated from chromaffin cell cytosol and nuclei. DEAE-cellulose chromatography revealed three peaks of kinase activity in the nucleus (nPKI, nPKII, nPKIII) and two in the cytosol (cPKI, cPKII). The three nuclear enzymes, as well as cPKII, did not require cyclic AMP to express their catalytic activity. nPKI and nPKIII preferred acidic substrates as PO3-4 acceptors, while nPKII and the cytosol enzymes preferred basic PO3-4 acceptors. Enzyme recombination experiments using protein kinase regulatory subunits from cytosol suggested that cPKII was the catalytic subunit of cPKI. In contrast, the nuclear enzymes were not catalytic subunits of the cyclic AMP-dependent protein kinase in the cytosol (cPKI). Only the cytosol protein kinases could be inhibited by endogenous heat-stable protein kinase inhibitors. The nuclear and cytosol cyclic AMP-independent protein kinases were distinguishable on the basis of their sedimentation constants as well as Mc2+ and Mn2+ requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号