首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aqueous leaf extracts of four plants, Argemone mexicana, Cyperus rotundus, Euphorbia hirta and Solanum nigrum , on growth and aflatoxin production by Aspergillus flavus was studied in SMKY liquid medium. All the plants inhibited aflatoxin production. No correlation between the growth of the fungus and aflatoxin synthesis was observed. The influence of these plants on the ratio of aflatoxin B1 to G1 is discussed.  相似文献   

2.
N Uraih  J R Chipley 《Microbios》1976,17(67):51-59
The effects of sodium chloride, sodium acetate, benzoic acid, sodium benzoate, malonic acid, and sodium malonate on growth and aflatoxin production by Aspergillus flavus were investigated in synthetic media. Sodium chloride at concentrations equivalent to or greater than 12 g/100 ml inhibited growth and aflatoxin production, while at 8 g or less/100 ml, growth and aflatoxin production were stimulated. At 2 g or less/100 ml, sodium acetate also stimulated growth and aflatoxin production, but reduction occurred with 4 g or more/100 ml. Malonic acid at 10, 20, 40, and 50 mM reduced growth and aflatoxin production (over 50%) while sodium malonate at similar concentrations but different pH values had the opposite effect. Benzoic acid (pH 3.9) and sodium benzoate (pH 5.0) at 0.4 g/100 ml completely inhibited growth and aflatoxin production. Examination of the effect of initial pH indicated that the extent of inhibitory action of malonic acid and sodium acetate was a function of initial pH. The inhibitory action of benzoic acid and sodium benzoate appeared to be a function of undissociated benzoic acid molecules. Aflatoxin reduction was usually accompanied by an unidentified orange pigment, while aflatoxin stimulation was accompanied by unidentified blue and green fluorescent spots but with lower Rf values that aflatoxins B1, G1, B2, and G2 standards.  相似文献   

3.
The efficacies of four different concentrations (3, 5, 8 and 10 mg/ml) of an aqueous extract of the Andrographis peniculata were tested on growth and aflatoxin production by Aspergillus flavus in liquid SMKY medium. The maximum inhibition of aflatoxin production and growth of A. flavus were marked at 10 mg/ml (i.e. 78.6% aft. B1 and 75.1% growth). Growth and aflatoxin production were co-related processes.  相似文献   

4.
The influence of six fungitoxicants on growth and aflatoxin production by Aspergillus flavus was tested in liquid SMKY medium at two concentrations, viz . 0.1 and 0.5%. Thiram completely inhibited the aflatoxin production at 0.5% concentration. Other fungitoxicants showing more than 60% inhibition were bavistin and daconil. Vitavax (0.1%) and agrosan GN (0.1 and 0.5%) stimulated the growth of fungus and aflatoxin elaboration after 7 d of incubation. Dithane M-45 moderately inhibited aflatoxin synthesis. Treatment with fungitoxicants also alters the ratio of B1 and G1.  相似文献   

5.
Total aflatoxin concentrations produced by Aspergillus parasiticus, isolate 64-R8, in Czapek's broth fortified with corn steep liquor increased proportionately as the concentration of corn steep was increased from 0.5 to 8.0% (v/v) until maximal growth, as measured by dry mycelial weight, was reached. Thereafter, aflatoxin concentrations declined more rapidly than the rate of autolysis of mycelial material. Data are presented which indicate that the concentration of corn steep liquor also affects the ratio of production of aflatoxin B(1) and B(2) to that of aflatoxin G(1) and G(2). Further, this ratio also varies with time of incubation. Although both growth of the fungus and aflatoxin production are stimulated by the addition of corn steep to the basic medium, the stimulation of toxin production is much greater than fungus growth.  相似文献   

6.
The effect of different concentrations of clove and cinnamon oils was studied on the growth of and aflatoxin production by Aspergillus flavus in SMKY liquid medium. The effect of these compounds was also verified against aflatoxin production in maize. Significant reduction (P < 0.05) in the elaboration of aflatoxin in liquid culture after treatment with more than 100 μg ml-1 of these compounds was recorded. Cinnamon oil exhibited maximum inhibitory action and reduced 78% aflatoxin formation on maize at 1000 mg kg-1.  相似文献   

7.
The effects of the elements zinc, manganese, iron, copper, molybdenum, and vanadium, added in various salt forms, on mycelial weights and aflatoxin B1 accumulation in the mycelium of Aspergillus flavus were investigated in liquid shake cultures. Ammonium heptamolybdate, when added to a complete medium at concentrations of 50-100 mg/L, appreciably reduced aflatoxin B1 accumulation without affecting growth of the fungus. Sodium molybdate and sodium monovanadate also reduced aflatoxin B1 yields without affecting mycelial growth but to a lesser extent. The addition of zinc sulphate stimulated aflatoxin B1 production in all media used. The influence of the other trace elements on aflatoxin production depended on the level of trace elements present in the basal medium. In general, manganese chloride had a stimulatory effect, whereas copper sulphate depressed yields. Mycelial levels of aflatoxin had peaked and then declined before mycelial dry weights had reached maximum. High yields of aflatoxin B1 were obtained in media having a final pH as low as pH 2.8.  相似文献   

8.
Inhibition of Aflatoxin Production by Surfactants   总被引:5,自引:3,他引:2       下载免费PDF全文
The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.  相似文献   

9.
Aspergillus parasiticus Speare NRRL 2999 growth and aflatoxin production in black and white pepper and the penetration of the fungus in black pepper corn over various incubation periods were studied. Also, the effects of piperine and pepper oil on growth and aflatoxin production were studied. Under laboratory conditions, black and white pepper supported aflatoxin production (62.5 and 44 ppb (ng/g), respectively) over 30 days of incubation. Fungal growth measured in terms of chitin was considerably less in white pepper than in black pepper. A histological study of black pepper corn showed the fungus penetrating up to the inner mesocarp and establishing itself in the middle mesocarp. Piperine and pepper oil were found to inhibit fungal growth and toxin production in a dose-dependent manner. Thus, both black and white pepper could be considered as poor substrates for fungal growth and aflatoxin production.  相似文献   

10.
Aspergillus parasiticus Speare NRRL 2999 growth and aflatoxin production in black and white pepper and the penetration of the fungus in black pepper corn over various incubation periods were studied. Also, the effects of piperine and pepper oil on growth and aflatoxin production were studied. Under laboratory conditions, black and white pepper supported aflatoxin production (62.5 and 44 ppb (ng/g), respectively) over 30 days of incubation. Fungal growth measured in terms of chitin was considerably less in white pepper than in black pepper. A histological study of black pepper corn showed the fungus penetrating up to the inner mesocarp and establishing itself in the middle mesocarp. Piperine and pepper oil were found to inhibit fungal growth and toxin production in a dose-dependent manner. Thus, both black and white pepper could be considered as poor substrates for fungal growth and aflatoxin production.  相似文献   

11.
The aim of the present work was to investigate the production of aflatoxin byAspergillus parasiticus and to find out the possible ways to control it. Of 40 food samples collected from Abha region, Saudi Arabia, only 25% were contaminated with aflatoxins. Oil-rich commodities had the highly contaminated commodities by fungi and aflatoxins while spices were free from aflatoxins.Bacillus megatertum andB cereus were suitable for microbiological assay of aflatoxins. Czapek’s-Dox medium was found a suitable medium for isolation of fungi from food samples. The optimal pH for the growth ofA. parasiticus and its productivity of aflatoxin B1 was found at 6.0, while the best incubation conditions were found at 30°C for 10 days. D-glucose was the best carbon source for fungal growth, as well as aflatoxin production. Corn steep liquor, yeast extract and peptone were the best nitrogen sources for both fungal growth and toxin production (NH4)2HPO4 (1.55 gL-1) and NaNO2 (1.6 gL-1) reduced fungal growth and toxin production with 37.7% and 85%, respectively. Of ten amino acids tested, asparagine was the best for aflatoxin B1 production. Zn2+ and Co2+ supported significantly both fungal growth, as well as, aflatoxin B1 production at the different tested concentrations. Zn2+ was effective when added toA. parasiticus growth medium at the first two days of the culture age. The other tested metal ions expressed variable effects depending on the type of ion and its concentration. Water activity (aw) was an important factor controlling the growth ofA. parasiticus and toxin production. The minimum aw for the fungal growth was 0.8 on both coffee beans and rice grains, while aw of 0.70 caused complete inhibition for the growth and aflatoxin B1 production. H2O2 is a potent inhibitor for growth ofA. parasiticus and its productivity of toxins. NaHCO3 and C6H5COONa converted aflatoxin B1 to water-soluble form which returned to aflatoxin B1 by acidity. Black pepper, ciliated heath, cuminum and curcuma were the most inhibitory spices on toxin production. Glutathione, quinine, EDTA, sodium azide, indole acetic acid, 2,4-dichlorophenoxy acetic acid, phenol and catechol were inhibitory for both growth, as well as, aflatoxin B1 production. Stearic acid supported the fungal growth and decreased the productivity of AFB1 gradually. Lauric acid is the most suppressive fatty acid for both fungal growth and aflatoxin production, but oleic acid was the most potent supporter. Vitamin A supported the growth but inhibited aflatoxin B1 production. Vitamins C and D2 were also repressive particularly for aflatoxin production The present study included studying the activities of some enzymes in relation to aflatoxin production during 20-days ofA. parasiticus age in 2-days intervals. Glycolytic enzymes and pyruvate-generating enzymes seems to be linked with aflatoxin B1 production. Also, pentose-phosphate pathway enzymes may provide NADPH for aflatoxin B1 synthesis. The decreased activities of TCA cycle enzymes particularly from 4th day of growth up to 10th day were associated with the increase of aflatoxin B1 production. All the tested enzymes as well as aflatoxin B1 production were inhibited by either catechol or phenol.  相似文献   

12.
Aspergillus parasiticus NRRL-2999 was inoculated into meat mixtures with curing salts and into yeast extractsucrose (YES) and sucrose-ammonium salts (SAS) broth with and without curing salts to determine if the presence of curing salts significantly affected growth and aflatoxin production by the mold. The effect of individual curing salts or curing salt mixtures on growth and toxin elaboration by the aspergillus was substrate dependent. When YES broth contained 100 ppm of NaNO2, 2% NaCl, or 1 or 2% NaCl plus 200 ppm of NaNO2 or 200 ppm of NaNO3, growth and/or aflatoxin production was depressed. Biosynthesis of aflatoxin B1 was enhanced by presence of 1 and 4% NaCl in YES broth. The SAS broth containing only NaCl or NaCl combined with nitrite or nitrate yielded less aflatoxin than did control broth or no aflatoxin at all. When compared to the control, an increase in growth and amount of aflatoxin occurred in SAS broth which contained 200 ppm of NaNO3. Sausages containing 100 and 200 ppm NaNO2 and no NaCl supported more mold growth and aflatoxin production than did control sausage with 3 % NaCl and 100 ppm of NaNO2. Addition of 2 and 3 % NaCl and no nitrite to sausage resulted in less aflatoxin than in control sausage.  相似文献   

13.
The co-inhabiting mycoflora with Aspergillus flavus observed on individual maize kernels was evaluated for its influence on aflatoxin synthesis. All 13 types of associations of different fungal species inhibited aflatoxin B1 and G1 production at different levels (34·3–100%). Inhibition of radial growth of A. flavus by Fusarium moniliforme (59·8%), Trichoderma viride (72·5%) and Rhizopus nigricans (42%) could be directly correlated to the per cent inhibition of aflatoxin production. High levels of inhibition of aflatoxin elaboration were noted in competition of A. flavus with other toxigenic moulds.  相似文献   

14.
Dillapiol was isolated from the essential oil of dill as a specific inhibitor of aflatoxin G1 production. It inhibited aflatoxin G1 production by Aspergillus parasiticus with an IC50 value of 0.15 microM without inhibiting aflatoxin B1 production or fungal growth. Apiol and myristicin, congeners of dillapiol, showed similar activity with IC50 values of 0.24 and 3.5 microM, respectively.  相似文献   

15.
Propolis ethanolic extract (PEE) at 3 and 4 g/L and ultragriseofulvin (UG) at 0.75 and 1 g/L reduced the percentage of conidia germination in twoAspergillus flavus isolates. PEE at 1–4 g/L decreased the mycelial dry mass ofA. flavus isolates by 11–80%, and aflatoxin B1 production by 34–100%. UG concentrations of 0.25–1 g/L reduced the growth and aflatoxin B1 production of the isolates by 16–88 and 48–98%, respectively. Any increase in PEE and UG concentration was accompanied by a clear decrease in the per cent conidia germination, growth and aflatoxin B1 production. At equal concentration, UG was about 4-times more effective than PEE.  相似文献   

16.
The effect of five different concentrations (2, 4, 6, 8 and 10 mg ml-1) of an aqueous extracts of Lupinus albus, Ammi visnaga and Xanthium pungens were tested on growth and aflatoxin production by Aspergillus flavus in a chemically defined medium. All the plants inhibited mycelial growth and aflatoxin formation. The inhibitory effect was proportional with the applied concentration. Growth and aflatoxin production appeared to be correlated processes. The nature of the plant extract also affected the ratio of B1 to B2, and there was no correlation between the inhibition of aflatoxins or growth of the fungus and the resultant B1: B2 ratio.  相似文献   

17.
筛选黄曲霉毒素生物防控菌,为黄曲霉毒素的生物防控提供支持。以花生原产地土壤为材料,采用牛津杯法筛选所需菌株。对筛选出的拮抗菌株进行抑制产毒曲霉菌株的生长、产孢、降解黄曲霉毒素实验。筛选出2株黄曲霉毒素生防细菌,编号21-1-2、17-3,经鉴定,拮抗菌21-1-2为枯草芽胞杆菌,拮抗菌17-3为地衣芽胞杆菌。分别对拮抗菌对曲霉孢子萌发的抑制、抑制黄曲霉的生长和菌丝延长以及减少黄曲霉毒素的产生、对黄曲霉毒素的分解作用等几个方面进行研究,结果表明,拮抗菌可以明显抑制产毒曲霉孢子的萌发、生长、菌丝的延长,减少黄曲霉毒素的产生以及分解黄曲霉毒素。  相似文献   

18.
Ethanolic extracts of olive callus tissues, added at 0.5 or 1.0% to media on which Aspergillus flavus was grown, inhibited aflatoxin production by 90% without inhibiting the fungal growth. The extract was found to contain mainly caffeic acid and, to a lesser extent, catechin and coumarins. The fungicidal and bactericidal activity of caffeic acid, catechin, coumarin and p-, o- or m-coumaric acid were tested and only caffeic acid and o-coumaric acid inhibited aflatoxin production. The inhibitory effect had no correlation with the growth of the fungus. Only coumarin at 10 mmol/1 totally inhibited fungal growth. Of the phenolic constituents of callus tissues tested, catechin and caffeic acid (10 mmol/1) showed bactericidal activity towards Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   

19.
AIMS: The effect of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), trihydroxybutyrophenone (THB) and propyl paraben (PP) (at concentrations of 1, 10 and 20 mmol l(-1)) on germination, growth and aflatoxin B1 production by Aspergillus section Flavi was evaluated. METHODS AND RESULTS: Studies on the percentage of spore germination, elongation rate, growth rate and aflatoxin B1 production were carried out in vitro in relation to water activity (aw) at 0.982, 0.937, 0.809 and 0.747 values. At 0.809 and 0.747aw values none of the isolates was able to germinate. Overall, PP and BHA were the antioxidants most effective at inhibiting germination of both species. In the presence of the lowest concentration of BHA and PP (1 mmol l(-1)) the conidial germination percentage ranged from 2 to 19% after 15 h of incubation at the highest water activity tested. BHA and PP at 10-20 mmol l(-1) completely inhibited conidial germination. The antioxidants more efficient in controlling Aspergillus elongation rate were PP, BHT and BHA. All strains were much more sensitive to all antioxidants tested on the percentage of spore germination and growth rate at 0.937aw. The antioxidants PP and BHA completely inhibited aflatoxin B1 production by all strains when added at 1 mmol l(-1). Decreased aflatoxin B1 levels in comparison with the control, were observed with BHT at 1, 10 and 20 mmol(-1) with the strain T20 at 0.982aw. In contrast, stimulation was observed with the antioxidant THB at 10 and 20 mmol l(-1) at 0.937aw with the strains T20 and T23. The effect of BHA and PP at 1 mmol l(-1) on lag phase and growth rate was maintained in the pH range between 6 and 8. At all pH values the inhibitory effect of BHA was higher than PP. No aflatoxin B1 was detected at all pH values. CONCLUSIONS: The data show that BHA and PP could be considered as effective fungitoxicants for A. flavus and A. parasiticus. SIGNIFICANCE AND IMPACT OF THE STUDY: The information obtained show promise for controlling growth and aflatoxin B1 in stored maize. Futher studies should be carried out to examine the potential for antioxidants, such as BHA and PP to effectively control both growth and aflatoxin production.  相似文献   

20.
Ethanolic extracts of olive callus tissues, added at 0.5 or 1.0% to media on which Aspergillus flavus was grown, inhibited aflatoxin production by 90% without inhibiting the fungal growth. The extract was found to contain mainly caffeic acid and, to a lesser extent, catechin and coumarins. The fungicidal and bactericidal activity of caffeic acid, catechin, coumarin and p-, o- or m-coumaric acid were tested and only caffeic acid and o-coumaric acid inhibited aflatoxin production. The inhibitory effect had no correlation with the growth of the fungus. Only coumarin at 10 mmol/1 totally inhibited fungal growth. Of the phenolic constituents of callus tissues tested, catechin and caffeic acid (10 mmol/l) showed bactericidal activity towards Pseudomonas aeruginosa and Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号