首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new integrated image analysis package with quantitative quality control schemes is described for cDNA microarray technology. The package employs an iterative algorithm that utilizes both intensity characteristics and spatial information of the spots on a microarray image for signal–background segmentation and defines five quality scores for each spot to record irregularities in spot intensity, size and background noise levels. A composite score qcom is defined based on these individual scores to give an overall assessment of spot quality. Using qcom we demonstrate that the inherent variability in intensity ratio measurements is closely correlated with spot quality, namely spots with higher quality give less variable measurements and vice versa. In addition, gauging data by qcom can improve data reliability dramatically and efficiently. We further show that the variability in ratio measurements drops exponentially with increasing qcom and, for the majority of spots at the high quality end, this improvement is mainly due to an improvement in correlation between the two dyes. Based on these studies, we discuss the potential of quantitative quality control for microarray data and the possibility of filtering and normalizing microarray data using a quality metrics-dependent scheme.  相似文献   

2.
We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.  相似文献   

3.
DNA microarray is an important tool for the study of gene activities but the resultant data consisting of thousands of points are error-prone. A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. In this study, we describe an approach based on normal mixture modeling for determining optimal signal intensity thresholds to identify reliable measurements of the microarray elements and subsequently eliminate false expression ratios. We used univariate and bivariate mixture modeling to segregate the microarray data into two classes, low signal intensity and reliable signal intensity populations, and applied Bayesian decision theory to find the optimal signal thresholds. The bivariate analysis approach was found to be more accurate than the univariate approach; both approaches were superior to a conventional method when validated against a reference set of biological data that consisted of true and false gene expression data. Elimination of unreliable signal intensities in microarray data should contribute to the quality of microarray data including reproducibility and reliability of gene expression ratios.  相似文献   

4.
Automatic analysis of DNA microarray images using mathematical morphology   总被引:10,自引:0,他引:10  
MOTIVATION: DNA microarrays are an experimental technology which consists in arrays of thousands of discrete DNA sequences that are printed on glass microscope slides. Image analysis is an important aspect of microarray experiments. The aim of this step is to reduce an image of spots into a table with a measure of the intensity for each spot. Efficient, accurate and automatic analysis of DNA spot images is essential in order to use this technology in laboratory routines. RESULTS: We present an automatic non-supervised set of algorithms for a fast and accurate spot data extraction from DNA microarrays using morphological operators which are robust to both intensity variation and artefacts. The approach can be summarised as follows. Initially, a gridding algorithm yields the automatic segmentation of the microarray image into spot quadrants which are later individually analysed. Then the analysis of the spot quadrant images is achieved in five steps. First, a pre-quantification, the spot size distribution law is calculated. Second, the background noise extraction is performed using a morphological filtering by area. Third, an orthogonal grid provides the first approach to the spot locus. Fourth, the spot segmentation or spot boundaries definition is carried out using the watershed transformation. And fifth, the outline of detected spots allows the signal quantification or spot intensities extraction; in this respect, a noise model has been investigated. The performance of the algorithm has been compared with two packages: ScanAlyze and Genepix, showing its robustness and precision.  相似文献   

5.
MOTIVATION: In this paper, we propose a fully automatic block and spot indexing algorithm for microarray image analysis. A microarray is a device which enables a parallel experiment of ten to hundreds of thousands of test genes in order to measure gene expression. Due to this huge size of experimental data, automated image analysis is gaining importance in microarray image processing systems. Currently, most of the automated microarray image processing systems require manual block indexing and, in some cases, spot indexing. If the microarray image is large and contains a lot of noise, it is very troublesome work. In this paper, we show it is possible to locate the addresses of blocks and spots by applying the Nearest Neighbors Graph Model. Also, we propose an analytic model for the feasibility of block addressing. Our analytic model is validated by a large body of experimental results. RESULTS: We demonstrate the features of automatic block detection, automatic spot addressing, and correction of the distortion and skewedness of each microarray image.  相似文献   

6.
Using Bayesian networks to analyze expression data.   总被引:44,自引:0,他引:44  
  相似文献   

7.

Background  

Although DNA microarray technologies are very powerful for the simultaneous quantitative characterization of thousands of genes, the quality of the obtained experimental data is often far from ideal. The measured microarrays images represent a regular collection of spots, and the intensity of light at each spot is proportional to the DNA copy number or to the expression level of the gene whose DNA clone is spotted. Spot quality control is an essential part of microarray image analysis, which must be carried out at the level of individual spot identification. The problem is difficult to formalize due to the diversity of instrumental and biological factors that can influence the result.  相似文献   

8.
9.
Combinatorial image analysis of DNA microarray features   总被引:3,自引:0,他引:3  
MOTIVATION: DNA and protein microarrays have become an established leading-edge technology for large-scale analysis of gene and protein content and activity. Contact-printed microarrays has emerged as a relatively simple and cost effective method of choice but its reliability is especially susceptible to quality of pixel information obtained from digital scans of spotted features in the microarray image. RESULTS: We address the statistical computation requirements for optimizing data acquisition and processing of digital scans. We consider the use of median filters to reduce noise levels in images and top-hat filters to correct for trends in background values. We also consider, as alternative estimators of spot intensity, discs of fixed radius, proportions of histograms and k-means clustering, either with or without a square-root intensity transformation and background subtraction. We identify, using combinatoric procedures, optimal filter and estimator parameters, in achieving consistency among the replicates of a gene on each microarray. Our results, using test data from microarrays of HCMV, indicate that a highly effective approach for improving reliability and quality of microarray data is to apply a 21 by 21 top-hat filter, then estimate spot intensity as the mean of the largest 20% of pixel values in the target region, after a square-root transformation, and corrected for background, by subtracting the mean of the smallest 70% of pixel values. AVAILABILITY: Fortran90 subroutines implementing these methods are available from the authors, or at http://www.bioss.ac.uk/~chris.  相似文献   

10.
In this paper, fluorescent microarray images and various analysis techniques are described to improve the microarray data acquisition processes. Signal intensities produced by rarely expressed genes are initially correctly detected, but they are often lost in corrections for background, log or ratio. Our analyses indicate that a simple correlation between the mean and median signal intensities may be the best way to eliminate inaccurate microarray signals. Unlike traditional quality control methods, the low intensity signals are retained and inaccurate signals are eliminated in this mean and median correlation. With larger amounts of microarray data being generated, it becomes increasingly more difficult to analyze data on a visual basis. Our method allows for the automatic quantitative determination of accurate and reliable signals, which can then be used for normalization. We found that a mean to median correlation of 85% or higher not only retains more data than current methods, but the retained data is more accurate than traditional thresholds or common spot flagging algorithms. We have also found that by using pin microtapping and microvibrations, we can control spot quality independent from initial PCR volume.  相似文献   

11.

Background  

In a microarray experiment the difference in expression between genes on the same slide is up to 103 fold or more. At low expression, even a small error in the estimate will have great influence on the final test and reference ratios. In addition to the true spot intensity the scanned signal consists of different kinds of noise referred to as background. In order to assess the true spot intensity background must be subtracted. The standard approach to estimate background intensities is to assume they are equal to the intensity levels between spots. In the literature, morphological opening is suggested to be one of the best methods for estimating background this way.  相似文献   

12.
Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi’s individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is more robust and sensitive to weak spots. More importantly, it can obtain higher segmentation accuracy in the presence of noise, artifacts and weakly expressed spots compared with the other four methods.  相似文献   

13.

Background  

The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images.  相似文献   

14.
MOTIVATION: Inner holes, artifacts and blank spots are common in microarray images, but current image analysis methods do not pay them enough attention. We propose a new robust model-based method for processing microarray images so as to estimate foreground and background intensities. The method starts with a very simple but effective automatic gridding method, and then proceeds in two steps. The first step applies model-based clustering to the distribution of pixel intensities, using the Bayesian Information Criterion (BIC) to choose the number of groups up to a maximum of three. The second step is spatial, finding the large spatially connected components in each cluster of pixels. The method thus combines the strengths of the histogram-based and spatial approaches. It deals effectively with inner holes in spots and with artifacts. It also provides a formal inferential basis for deciding when the spot is blank, namely when the BIC favors one group over two or three. RESULTS: We apply our methods for gridding and segmentation to cDNA microarray images from an HIV infection experiment. In these experiments, our method had better stability across replicates than a fixed-circle segmentation method or the seeded region growing method in the SPOT software, without introducing noticeable bias when estimating the intensities of differentially expressed genes. AVAILABILITY: spotSegmentation, an R language package implementing both the gridding and segmentation methods is available through the Bioconductor project (http://www.bioconductor.org). The segmentation method requires the contributed R package MCLUST for model-based clustering (http://cran.us.r-project.org). CONTACT: fraley@stat.washington.edu.  相似文献   

15.
Protein microdeposition using a conventional ink-jet printer   总被引:5,自引:0,他引:5  
Many recent bioanalytical systems based on immunologic and hybridization reactions in a mono- or bidimensional microarray format require technology that can produce arrays of spots containing biospecific molecules. Some microarray deposition instruments are commercially available, and other devices have been described in recent papers. We describe a system obtained by adapting a commercial ink-jet printer and used to produce mono- and bidimensional arrays of spots containing horseradish peroxidase on cellulose paper. In a few minutes, it was possible to obtain bidimensional arrays containing several thousands of spots with a diameter as low as 0.2 mm, with each of which requiring only a few nanoliters of the enzyme deposition solution. The quantity of enzyme in each spot was evaluated with a chemiluminescent reaction and a charge-coupled device-based, low-light imaging luminograph. The chemiluminescence measurements revealed that the reproducibility of the enzyme deposition was satisfactory for analytical purposes, with the variation coefficients being lower than 10% in almost all cases.  相似文献   

16.

Background  

Image analysis is the first crucial step to obtain reliable results from microarray experiments. First, areas in the image belonging to single spots have to be identified. Then, those target areas have to be partitioned into foreground and background. Finally, two scalar values for the intensities have to be extracted. These goals have been tackled either by spot shape methods or intensity histogram methods, but it would be desirable to have hybrid algorithms which combine the advantages of both approaches.  相似文献   

17.
limmaGUI: a graphical user interface for linear modeling of microarray data   总被引:15,自引:0,他引:15  
SUMMARY: limmaGUI is a graphical user interface (GUI) based on R-Tcl/Tk for the exploration and linear modeling of data from two-color spotted microarray experiments, especially the assessment of differential expression in complex experiments. limmaGUI provides an interface to the statistical methods of the limma package for R, and is itself implemented as an R package. The software provides point and click access to a range of methods for background correction, graphical display, normalization, and analysis of microarray data. Arbitrarily complex microarray experiments involving multiple RNA sources can be accomodated using linear models and contrasts. Empirical Bayes shrinkage of the gene-wise residual variances is provided to ensure stable results even when the number of arrays is small. Integrated support is provided for quantitative spot quality weights, control spots, within-array replicate spots and multiple testing. limmaGUI is available for most platforms on the which R runs including Windows, Mac and most flavors of Unix. AVAILABILITY: http://bioinf.wehi.edu.au/limmaGUI.  相似文献   

18.
19.
The aims were to evaluate the common reference design approach in microarray experiments and to evaluate the technical performance and the normalisation of cDNA microarrays with a limited number of spots. Total RNA from 3 normal and 3 tumour sample biopsies were used for synthesis of amino-allyl labelled cRNA. Equal amounts of cRNA from all samples were mixed as reference. After conjugation of cRNA with fluorophores (Cy3/Cy5), each individual tumour cRNA was hybridised to a cDNA microarray together with reference cRNA, scanned and analysed. We show that our procedures for producing cDNA microarrays are reproducible. The concordance between duplicated spots and replicate hybridisation was found to be high. We have demonstrated that our cDNA microarrays are of a high technical quality. The majority of the cDNA microarrays had low local spot background levels. Despite the high background levels for some local spots, variation could be minimized by locally weighted scatter plot smooth normalisation (LOWESS), which we showed was also suitable for normalisation of cDNA microarrays with a limited number of probes.  相似文献   

20.
In this paper, correlation of the pixels comprising a microarray spot is investigated. Subsequently, correlation statistics, namely, Pearson correlation and Spearman rank correlation, are used to segment the foreground and background intensity of microarray spots. The performance of correlation-based segmentation is compared to clustering-based (PAM, k-means) and seeded-region growing techniques (SPOT). It is shown that correlation-based segmentation is useful in flagging poorly hybridized spots, thus minimizing false-positives. The present study also raises the intriguing question of whether a change in correlation can be an indicator of differential gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号