首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant human lysozymes (Ile56Thr & Asp67His) have been reported to form amyloid deposits in the viscera. From the standpoint of understanding the mechanism of amyloid formation, we searched for conditions of amyloid formation in vitro using hen egg lysozyme, which has been extensively studied from a physicochemical standpoint. It was found that the circular dichroism spectra in the far-ultraviolet region of the hen egg lysozyme changed to those characteristic of a beta-structure from the native alpha-helix rich spectrum in 90% ethanol solution. When the concentration of protein was increased to 10 mg/mL, the protein solution formed a gel in the presence of 90% ethanol, and precipitated on further addition of 10 mM NaCl. The precipitates were examined by electron microscopy, their ability to bind Congo red, and X-ray diffraction to determine whether amyloid fibrils were formed in the precipitates. Electron micrographs displayed unbranched protofilament with a diameter of approximately 70 A. The peak point of the difference spectrum for the Congo red binding assay was 541 nm, which is characteristic of amyloid fibrils. The X-ray diffraction pattern showed a sharp and intense diffraction ring at 4.7 A, a reflection that arises from the interstrand spacing in beta-sheets. These results indicate that the precipitates of hen egg lysozyme are amyloid protofilament, and that the amyloid protofilament formation of hen egg lysozyme closely follows upon the destruction of the helical and tertiary structures.  相似文献   

2.
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.  相似文献   

3.
The earliest events in protein folding involve the formation of simple loops. Observing the rates of loop closure under denaturing conditions can provide direct insight into the relative probability and sequence determinants for formation of loops of different sizes. The persistence of these initial contacts is equally important for efficient folding, so measurement of rates of loop breakage under denaturing conditions is also essential. We have used stopped-flow and continuous-flow methods to measure the rates of histidine-heme loop formation and breakage in the denatured state of iso-1-cytochrome c (in the presence of 3 M guanidine HCl). The data indicate that the mechanism for forming loops is a two-step process, the first step being the deprotonation of the histidine, and the second step being the binding of the histidine to the heme. This mechanism makes it possible to extract both the rate constants of formation, k(f), and breakage, k(b), of loops from the pH dependence of the observed rate constant, k(obs). To determine the dependence of k(f) and k(b) on loop size, we have carried out kinetic measurements for seven single surface histidine variants of iso-1-cytochrome c. A scaling factor (the dependence of k(f) on log[loop size]) of approximately -1.8 is observed for loop formation, similar to that observed in other systems. The magnitude of k(b) varies from 30 s(-1) to 300 s(-1), indicating that the stability of different loops varies considerably. The implications of the kinetics of loop formation and breakage in the denatured state for the mechanism of protein folding are discussed.  相似文献   

4.
Many research efforts in the last years have been directed towards understanding the factors determining protein misfolding and amyloid formation. Protein stability and amino acid composition have been identified as the two major factors in vitro. The research of our group has been focused on understanding the relationship between amino acid sequence and amyloid formation. Our approach has been the design of simple model systems that reproduce the biophysical properties of natural amyloids. An amyloid sequence pattern was extracted that can be used to detect amyloidogenic hexapeptide stretches in proteins. We have added evidence supporting that these amyloidogenic stretches can trigger amyloid formation by nonamyloidogenic proteins. Some experimental results in other amyloid proteins will be analyzed under the conclusions obtained in these studies. Our conclusions together with evidences from other groups suggest that amyloid formation is the result of the interplay between a decrease of protein stability, and the presence of highly amyloidogenic regions in proteins. As many of these results have been obtained in vitro, the challenge for the next years will be to demonstrate their validity in in vivo systems.  相似文献   

5.
Lysozymes play a key role in the innate immune system of vertebrates and invertebrates by hydrolyzing peptidoglycan, a vital component of the bacterial cell wall. Gram-negative bacteria produce various types of lysozyme inhibitors that allow them to survive the bactericidal action of lysozyme when their outer membrane is permeabilized. So far, three lysozyme inhibitor families have been described: the Ivy (inhibitor of vertebrate lysozyme) family, the MliC/PliC (membrane-associated/periplasmic lysozyme inhibitor of C-type lysozyme) family, and the PliI (periplasmic lysozyme inhibitor of I-type lysozyme) family. Here, we report high-resolution crystal structures of Salmonella typhimurium PliC (PliC-St) and Aeromonas hydrophila PliI (PliI-Ah). The structure of PliI-Ah is the first in the recently discovered PliI family of lysozyme inhibitors, while the structure of PliC-St is the first structure of a periplasmic lysozyme inhibitor from the PliC/MliC family. Using small-angle X-ray scattering, we demonstrate that both PliC-St and PliI-Ah form stable dimers in solution. The functional dimer architecture of PliC-St is very different from that of the recently described MliC from Pseudomonas aeruginosa (MliC-Pa), despite the close resemblance of their monomers. Furthermore, PliI-Ah has distinctly different monomer and dimer folds compared to PliC, MliC, and Ivy proteins. Site-directed mutagenesis suggests that the inhibitory action of PliI-Ah proceeds via an insertion of a loop containing the conserved SGxY motif into the active center of I-type lysozymes. This motif is related to the functional SGxxY motif found in the MliC/PliC family.  相似文献   

6.
The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes.  相似文献   

7.
Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo > 0 to the resolution of 1.12 Å and 1.15 Å, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 Å (TEL) and 0.034 Å (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed Beqv. However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of Beqv, was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. Proteins 30:232–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
In order to clarify whether modulation of long-range interactions in the denatured state affect native disulfide bond (SS bond) formations of hen egg white lysozyme (HEL) containing a pair of cysteine residues, we examined the extent of SS bond formation among 12 variants containing a pair of cysteines. The loss of clusters 5 and 6 in the denatured state affected the formation of Cys30-Cys115 and Cys6-Cys127 respectively.  相似文献   

9.
The calcium-binding equine lysozyme has been found to undergo conversion into amyloid fibrils during incubation in solution at acidic pH. At pH 4.5 and 57 degrees C, where equine lysozyme forms a partially unfolded molten globule state, the protein forms protofilaments with a width of ca. 2 nm. In the absence of Ca(2+) the protofilaments are present as annular structures with a diameter of 40-50 nm. In the presence of 10 mM CaCl(2) the protofilaments of equine lysozyme are straight or curved; they can assemble into thicker threads, but they do not appear to undergo circularisation. At pH 2.0, where the protein is more destabilised compared to pH 4.5, fibril formation occurs at 37 degrees C and 57 degrees C. At pH 2.0, both ring-shaped and linear protofilaments are formed, in which periodic repeats of ca 35 nm can be distinguished clearly. The rings constitute about 10% of all fibrillar species under these conditions and they are characterised by a larger diameter of 70-80 nm. All the structures bind Congo red and thioflavine T in a manner similar to fibrils associated with a variety of amyloid diseases. At pH 2.0, fibril formation is accompanied by some acidic hydrolysis, producing specific fragmentation of the protein, leading to the accumulation of two peptides in particular, consisting of residues 1-80 and 54-125. At the initial stages of incubation, however, full-length equine lysozyme represents the dominant species within the fibrils. We propose that the ring-shaped structures observed here, and in the case of disease-associated proteins such as alpha-synuclein, could be a second generic type of amyloid structure in addition to the more common linear fibrils.  相似文献   

10.
Many questions in the field of protein aggregation to amyloid fibrils remain open. In this review we describe predominantly in vitro studies of oligomerization and amyloid fibril formation by human stefins A and B. In human stefin B amyloidogenesis in vitro we have observed some general and many specific properties of its prefibrillar oligomers and amyloid fibrils. One characteristic feature in common to stefins and cystatins (and possibly some other amyloid proteins) is domain-swapping. In addition to solution structure of the domain-swapped dimer of stefin A, we recently have determined 3D structure of stefin B tetramer, which proved to be composed from two domain-swapped dimers, whose interaction occurs by a proline switch in the loop surrounding the conserved Pro 74. Studying the mechanism of fibril formation by stefin B, we found that the nucleation and fibril elongation reactions have energies of activation (Ea’s) in the range of proline isomerisation, strongly indicating importance of the Pro at site 74 and/or other prolines in the sequence. Correlation between toxicity of the prefibrillar oligomers and their interaction with acidic phospholipids was demonstrated. Stefin B was shown to interact with amyloid-beta peptide of Alzheimer’s disease in an oligomer specific manner, both in vitro and in the cells. It also has been shown that endogenous stefin B (with E at site 31) but especially the EPM1 mutant R68X and Y31-stefin B variant, and to a lesser extent EPM1 mutant G4R, are prone to form aggregates in cells.  相似文献   

11.
A soluble, oligomeric beta-sheet-rich conformational variant of recombinant full-length prion protein, PrP beta, was generated that aggregates into amyloid fibrils, PrP betaf. These fibrils have physico-chemical and structural properties closely similar to those of pathogenic PrP Sc in scrapie-associated fibrils and prion rods, including a closely similar proteinase K digestion pattern and Congo red birefringence. The conformational transition from PrP C to PrP beta occurs at pH 5.0 in bicellar solutions containing equimolar mixtures of dihexanoyl-phosphocholine and dimyristoyl-phospholipids, and a small percentage of negatively charged dimyristoyl-phosphoserine. The same protocol was applicable to human, cow, elk, pig, dog and mouse PrP. Comparison of full-length hPrP 23-230 with the N-terminally truncated human PrP fragments hPrP 90-230, hPrP 96-230, hPrP 105-230 and hPrP 121-230 showed that the flexible peptide segment 105-120 must be present for the generation of PrP beta. Dimerization of PrP C represents the rate-limiting step of the PrP C-to-PrP beta conformational transition, which is dependent on the amino acid sequence. The activation enthalpy of dimerization is about 130 kJ/mol for the recombinant full-length human and bovine prion proteins, and between 260 and 320 kJ/mol for the other species investigated. The in vitro conversion assay described here permits direct molecular characterization of processes that might be closely related to conformational transitions of the prion protein in transmissible spongiform encephalopathies.  相似文献   

12.
Amyloid fibril formation is responsible for several neurodegenerative diseases and are formed when native proteins misfold and stick together with different interactive forces. In the present study, we have determined the mode of interaction of the anionic surfactant sarkosyl with hen egg white lysozyme (HEWL) [EC No. 3.2.1.17] at two pHs (9.0 and 13.0) and investigated its impact on fibrillogenesis. Our data suggested that sarkosyl is promoting amyloid fibril formation in HEWL at the concentration range between 0.9 and 3.0 mM and no amyloid fibril formation was observed in the concentration range of 3.0–20.0 mM at pH 9.0. The results were confirmed by several biophysical and computational techniques, such as turbidity measurement, dynamic light scattering, Raleigh scattering, ThT fluorescence, intrinsic fluorescence, far-UV CD and atomic force microscopy. Sarkosyl was unable to induce aggregation in HEWL at pH 13.0 as confirmed by turbidity and RLS measurements. HEWL forms larger amyloid fibrils in the presence of 1.6 mM of sarkosyl. The spectroscopic, microscopic and molecular docking data suggest that the negatively charged carboxylate group and 12-carbon hydrophobic tail of sarkosyl stimulate amyloid fibril formation in HEWL via electrostatic and hydrophobic interaction. This study leads to new insight into the process of suppression of fibrillogenesis in HEWL which can be prevented by designing ligands that can retard the electrostatic and hydrophobic interaction between sarkosyl and HEWL.  相似文献   

13.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   


14.
Amyloid fibril formation from full-length and fragments of amylin   总被引:9,自引:0,他引:9  
Amyloiddeposits of fibrillar human amylin (hA) in the pancreas may be a causative factor in type-2 diabetes. A detailed comparison of in vitro fibril formation by full-length hA(1-37) versus fragments of this peptide-hA(8-37) and hA(20-29)-is presented. Circular dichroism spectroscopy revealed that fibril formation was accompanied by a conformational change: random coil to beta-sheet/alpha-helical structure. Fibril morphologies were visualized by electron microscopy and displayed a remarkable diversity. hA(20-29) formed flat ribbons consisting of numerous 3. 6-nm-wide protofibrils. In contrast, hA(1-37) and hA(8-37) formed polymorphic higher order fibrils by lateral association and/or coiling together of 5.0-nm-wide protofibril subunits. For full-length hA(1-37), the predominant fibril type contained three protofibrils and for hA(8-37), the predominant type contained two protofibrils. Polymerization was also monitored with the thioflavin-T binding assay, which revealed different kinetics of assembly for hA(1-37) and hA(8-37) fibrils. hA(20-29) fibrils did not bind thioflavin-T. Together the results demonstrate that the N-terminal region of the hA peptide influences the relative frequencies of the various higher order fibril types and thereby the overall kinetics of fibril formation. Furthermore, while residues 20-29 contribute to the fibrils' beta-sheet core, the flanking C- and N-terminal regions of the hA peptide determine the interactions involved in the formation of higher order coiled polymorphic superstructures.  相似文献   

15.
The diffusion coefficient and viscosity of lysozyme solutions were measured at 25°C in various buffers with and without sodium chloride. Measurements were made over the entire concentration range in each case and were extended into the supersaturated region. The results show that diffusion coefficient behavior depends strongly on the buffer used and the ionic strength of the solution, which means the amount of sodium chloride used in buffer solution. Viscosity measurements indicate a small degree of time dependence, with the viscosity increasing with solution age.  相似文献   

16.
Amyloid fibril formation is associated with an array of degenerative diseases. While no real cure is currently available, evidence suggests that suppression of amyloid fibrillogenesis is an effective strategy toward combating these diseases. Brilliant blue R (BBR), a disulfonated triphenylmethane compound, has been shown to interact with fibril-forming proteins but exert different effects on amyloid fibrillogenesis. These inconsistent findings prompted us to further evaluate BBR’s effect on the inhibition/suppresion of protein fibrillogenesis. Using 129-residue hen lysozyme, which shares high sequence homology to human lysozyme associated with hereditary non-neuropathic systemic amyloidosis, as a model, this study is aimed at thoroughly examining the influence of BBR on the in vitro protein fibrillogenesis. We first showed that BBR dose-dependently attenuated lysozyme fibril formation probably by affecting the fibril growth rate, with the value of IC50 determined to be ~4.39 μM. Next, we employed tryptophan fluorescence quenching method to determine the binding constant and number of binding site(s) associated with BBR-lysozyme binding. In addition, we further conducted molecular docking studies to gain a better understanding of the possible binding site(s) and interaction(s) between lysozyme and BBR. We believe some of the information and/or knowledge concerning the structure–function relationship associated with BBR’s suppressing activity obtained here can be applied for the future work in the subject matter related with the therapeutic strategies for amyloid diseases.  相似文献   

17.
To investigate the role of some tertiary interactions, the disulfide bonds, in the early stages of refolding of hen lysozyme, we report the kinetics of reoxidation of denatured and reduced lysozyme under the same refolding conditions as those previously used to investigate the kinetics of regain of its circular dichroism (CD), fluorescence, and activity. At different stages of the refolding, the oxidation of the protein was blocked by alkylation of the free cysteines with iodoacetamide and the various oxidation states present in the samples were identified by electrospray-mass spectrometry. Thus, it was possible to monitor the appearance and/or disappearance of the species with 0 to 4 disulfide bonds. Using a simulation program, these kinetics were compared with those of regain of far-UV CD, fluorescence, and enzymatic activity and were discussed in terms of a refined model for the refolding of reduced hen egg white lysozyme.  相似文献   

18.
19.
Aggregation of the N-terminal domain of the Escherichia coli HypF (HypF-N) was investigated in mild denaturing conditions, generated by addition of 6-12% (v/v) trifluoroethanol (TFE). Atomic force microscopy indicates that under these conditions HypF-N converts into the same type of protofibrillar aggregates previously shown to be highly toxic to cultured cells. These convert subsequently, after some weeks, into well-defined fibrillar structures. The rate of protofibril formation, monitored by thioflavin T (ThT) fluorescence, depends strongly on the concentration of TFE. Prior to aggregation the protein has far-UV circular dichroism (CD) and intrinsic fluorescence spectra identical with those observed for the native protein in the absence of co-solvent; the quenching of the intrinsic tryptophan fluorescence by acrylamide and the ANS binding properties are also identical in the two cases. These findings indicate that HypF-N is capable of forming amyloid protofibrils and fibrils under conditions in which the protein is initially in a predominantly native-like conformation. The rate constants for folding and unfolding of HypF-N, determined in 10% TFE using the stopped-flow technique, indicate that a partially folded state is in rapid equilibrium with the native state and populated to ca 1%. A kinetic analysis reveals that aggregation results from molecules accessing such a partially folded state. The approach described here shows that it is possible to probe the mechanism of aggregation of a specific protein under conditions in which the protein is initially native and hence relevant to a physiological environment. In addition, the results indicate that toxic protofibrils can be formed from globular proteins under conditions that are only marginally destabilising and in which the large majority of molecules have the native fold. This conclusion emphasises the importance for cells to constantly combat the propensity for even the most stable of these proteins to aggregate.  相似文献   

20.
The activation domain of human procarboxypeptidase A2 (ADA2h) aggregates following thermal or chemical denaturation at acidic pH. The aggregated material contains well-defined ordered structures with all the characteristics of the fibrils associated with amyloidotic diseases. Variants of ADA2h containing a series of mutations designed to increase the local stability of each of the two helical regions of the protein have been found to have a substantially reduced propensity to form fibrils. This arises from a reduced tendency of the denatured species to aggregate rather than from a change in the overall stability of the native state. The reduction in aggregation propensity may result from an increase in the stability of local relative to longer range interactions within the polypeptide chain. These findings show that the intrinsic ability of a protein to form amyloid can be altered substantially by protein engineering methods without perturbing significantly its overall stability or activity. This suggests new strategies for combating diseases associated with the formation of aggregated proteins and for the design of novel protein or peptide therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号