首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
在筛选拟南芥(ArabidopsisthalianaL.)叶突变体的过程中获得拟南芥uprightrosette(uro)突变体。uro为半显性突变体,因突变体在幼苗生长期莲座叶竖直生长而得名。对uro突变体的表型进行了详细的分析,结果表明uro突变不仅造成叶生长模式的改变,还出现多种其他异常表型。uro杂合和纯合突变体都表现出植物顶端优势的丧失,纯合突变体表现得更为严重。uro纯合突变体的一些二级分枝会被叶取代,这种叶的叶柄与叶片远轴面连接。突变体的花发育也有多种异常表型,主要表现为花瓣及雄蕊数目的改变、花器官的同源异型转化和不同花器官的融合。uro突变体茎软,细胞学水平分析表明突变体的内皮层组织发生增生,束间纤维发育及维管束分化受阻。顶端优势的丧失及维管组织的异常发育表明,URO基因可能参与生长素对植物发育的调节。pin1uro双突变体表型的分析表明,虽然双突变茎表型出现了两亲本表型的叠加,但双突变体的花却出现了新的表型,说明URO与PIN1基因在调节植物发育过程中具有部分遗传上的相互作用,这一结果进一步证明URO基因参与了生长素调节的植物发育过程。  相似文献   

2.
拟南芥生长素相关突变体uro的光依赖性乙烯信号异常   总被引:1,自引:0,他引:1  
拟南芥uro(upright rosette)突变体由于它的莲座叶垂直向上生长而得名。已有的研究表明,uro突变体的表型是由单突变导致的;同时,URO基因可能参与生长素对拟南芥发育的调控过程。uro突变体具有一些乙烯相关的表型特征,如:偏下性生长的叶,较长的下胚轴,宿存的花被等。施加乙烯与乙烯作用抑制剂硝酸银的实验结果显示,uro突变体的部分表型特征是由于乙烯信号系统异常所造成的。  相似文献   

3.
拟南芥矮小丛生突变体的分离与分子鉴定   总被引:2,自引:0,他引:2  
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制。最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制。通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf l,budl)突变体。突变体植株的表型包括顶端优势丧失、株型矮小,表明budl突变体存在生长素代谢、运输或信号传导的缺陷。一个对生长素特异反应的启动子驱动的报告基因在budl中表达模式改变。生长素敏感性和运输能力的测定表明这两个过程在budl中均正常。以上结果显示budl表型是生长素代谢缺陷的结果。遗传分析表明BUDI为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离。  相似文献   

4.
在筛选与维管发育相关的拟南芥突变体过程中,发现拟南芥DUF1218家族At1g52910基因突变体的花器官明显异常。通过基因型分析筛选到纯合突变体,TAIL-PCR分析结果表明突变体为Ds单位点插入突变,突变体后代表型出现分离现象,暗示有其它突变位点存在。  相似文献   

5.
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制.最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制.通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf 1, bud1 )突变体.突变体植株的表型包括顶端优势丧失、株型矮小,表明bud1 突变体存在生长素代谢、运输或信号传导的缺陷.一个对生长素特异反应的启动子驱动的报告基因在bud1 中表达模式改变.生长素敏感性和运输能力的测定表明这两个过程在 bud1中均正常.以上结果显示bud1 表型是生长素代谢缺陷的结果.遗传分析表明BUD1 为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离.  相似文献   

6.
在筛选与维管发育相关的拟南芥突变体过程中,发现拟南芥基因At1g52910突变体的花器官明显异常。TAIL-PCR分析结果表明突变体为Ds单位点插入突变,突变体后代表型出现分离现象,暗示有其它突变位点存在。  相似文献   

7.
在小麦育种材料中首次发现一种穗部发育萎缩且花器官明显退化,但茎、叶等其他器官发育正常的突变体sda1(spike development atrophy 1)。用显微镜观察突变体sda1的花器官,用碘-碘化钾鉴定其小孢子育性;以‘陕麦94’为父本,突变材料sda1为母本构建F2群体,调查各主要农艺性状,灌浆期测定穗部及穗下茎可溶性糖含量、旗叶光合性能(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率),对该突变体进行遗传分析;利用SSR微卫星标记,通过混合分离分析(BSA)和群体连锁分析进行基因定位,进一步探索该基因功能。结果表明:(1)小麦突变体sda1雄蕊发育畸形,雌蕊发育萎缩,小孢子几乎全部丧失育性。(2)对突变体sda1原株系中表型正常植株的后代分离统计分析结果证明,该突变性状由1对隐性核基因控制,并命名该基因为SDA1。(3)在F2群体中,突变株抽穗期较正常株延迟4d;穗部及穗下茎可溶性糖含量分别显著高于正常株30.6%和11.0%,但突变株与正常株的抽穗持续时间(均为8d)和光合性能无显著差异。(4)经基因定位分析初步确定SDA1位于小麦6B染色体WMC398和BARC136标记之间,与两标记的遗传距离分别为2.2cM和2.1cM。推测认为,SDA1是一个控制抽穗期与器官发育的多效基因,且该基因突变影响植株的糖分转化与利用。  相似文献   

8.
对拟南芥异三聚体G蛋白α-亚基突变体gpa1-3、β-亚基突变体agb1-2及α和β亚基双突变体gpa1agb1与相应的Col野生型的形态特征比较发现,异三聚体G蛋白的突变引起根、叶、生殖器官等的表型发生改变,gpa1-3的叶片宽椭圆形,略大于Col,叶片下表皮细胞显著大于Col、agb1-2及gpa1agb1,果柄也显著长于其它三类,但侧根发生及长角果形态与Col无显著性差异;agb1-2的表型与gpa1agb1的表型相似:叶片小而近圆形、叶缘平滑,侧根发达,长角果较短,这些特征均显著区别于Col及gpa1-3.结果表明,异三聚体G-蛋白在拟南芥的多个生长发育过程中发生作用,且α-亚基和β-亚基在叶、根、花器官等发育过程中的作用不同.  相似文献   

9.
长颖壳花器官突变体从野生稻(Oryza ntvara Sharma et Shastry)和栽培稻(Oryza sativa subsp.indica Kato)杂交后代材料中获得.该突变体的内外稃变长、呈叶状,且顶端表现不同程度的开裂;每朵颖花的雄蕊l~10枚不等;雌蕊l~3枚不等;子房上柱头l~5个不等;有的颖花形成雄蕊/雌蕊嵌合体;子房处常附有瘤状物;此突变体结实率为1 8.2%;花粉可育率为62.46%.利用扫描电镜观察了该突变体花器官形态发生过程,并经遗传分析鉴定该突变性状由单隐性基因(暂命名为lh)控制.本文讨论了lh基因和以前鉴定的其他突变体基因之间的关系,通过表型分析推测,突变体基因可能影响花器官数目同时具有拟南芥B类基因的部分功能.  相似文献   

10.
叶的极性建立直接决定叶的平展性发育,极性改变导致叶形态异常,影响植物体的各种正常生理活动。利用反向遗传学方法,从拟南芥基因激活标签突变体库中分离到一个叶片边缘锯齿状表型的突变体(命名为pCB1294),该突变体同时表现出叶表皮腺毛形态发育异常。通过TailPCR方法成功定位突变基因为At5g41663,该基因编码miR319b基因。Real time PCR显示,pCB1294突变体植株中miR319b基因的表达量是野生型(col)植株的11倍多。所得结果为进一步研究miRNA调控叶极性的分子机制和进一步分析miR319b与叶形态发生的关系奠定了基础。  相似文献   

11.
Alteration of auxin polar transport in the Arabidopsis ifl1 mutants   总被引:1,自引:0,他引:1  
Zhong R  Ye ZH 《Plant physiology》2001,126(2):549-563
The INTERFASCICULAR FIBERLESS/REVOLUTA (IFL1/REV) gene is essential for the normal differentiation of interfascicular fibers and secondary xylem in the inflorescence stems of Arabidopsis. It has been proposed that IFL1/REV influences auxin polar flow or the transduction of auxin signal, which is required for fiber and vascular differentiation. Assay of auxin polar transport showed that the ifl1 mutations dramatically reduced auxin polar flow along the inflorescence stems and in the hypocotyls. The null mutant allele ifl1-2 was accompanied by a significant decrease in the expression level of two putative auxin efflux carriers. The ifl1 mutants remained sensitive to auxin and an auxin transport inhibitor. The ifl1-2 mutant exhibited visible phenotypes associated with defects in auxin polar transport such as pin-like inflorescence, reduced numbers of cauline branches, reduced numbers of secondary rosette inflorescence, and dark green leaves with delayed senescence. The visible phenotypes displayed by the ifl1 mutants could be mimicked by treatment of wild-type plants with an auxin polar transport inhibitor. In addition, the auxin polar transport inhibitor altered the normal differentiation of interfascicular fibers in the inflorescence stems of wild-type Arabidopsis. Taken together, these results suggest a correlation between the reduced auxin polar transport and the alteration of cell differentiation and morphology in the ifl1 mutants.  相似文献   

12.
The molecular mechanisms that control the ordered patterning of vascular tissue development in plants are not well understood. Several models propose a two-component system for vascular differentiation. These components include an inducer of vascular tissue development and an inhibitor that prevents the formation of vascular bundles near pre-existing bundles. We have identified two recessive allelic mutants in Arabidopsis, designated continuous vascular ring (cov1), that display a dramatic increase in vascular tissue development in the stem in place of the interfascicular region that normally separates the vascular bundles. The mutant plants exhibited relatively normal vascular patterning in leaves and cotyledons. Analysis of the interaction of cov1 with a known auxin signalling mutant and direct analysis of auxin concentrations suggests that cov1 affects vascular pattering by some mechanism that is independent of auxin. The COV1 protein is predicted to be an integral membrane protein of unknown function, highly conserved between plants and bacteria. In plants, COV1 is likely to be involved in a mechanism that negatively regulates the differentiation of vascular tissue in the stem.  相似文献   

13.
The recessive mutations aux1 and axr1 of Arabidopsis confer resistance to the plant hormone auxin. The axr1 mutants display a variety of morphological defects. In contrast, the only morphological defect observed in aux1 mutants is a loss of root gravitropism. To learn more about the function of these genes in auxin response, the expression of the auxin-regulated gene SAUR-AC1 in mutant and wild-type plants has been examined. It has been found that axr1 plants display a pronounced deficiency in auxin-induced accumulation of SAUR-AC1 mRNA in seedlings as well as rosette leaves and mature roots. In contrast, the aux1 mutation has a modest effect on auxin induction of SAUR-AC1. To determine if the AUX1 and AXR1 genes interact to facilitate auxin response, plants which are homozygous for both aux1 and axr1 mutations have been constructed and characterized. The two mutations are additive in their effects on auxin response, suggesting that each mutation confers resistance by a different mechanism. However, the morphology of double mutant plants indicates that there is an inter-action between the AXR1 and AUX1 genes. In mature plants, the aux1-7 mutation acts to partially suppress the morphological defects conferred by the axr1-12 mutation. This suppression is not accompanied by an increase in auxin response, as measured by SAUR-AC1 expression, suggesting that the interaction between the AUX1 and AXR1 genes is indirect.  相似文献   

14.
Genetic approaches to auxin action   总被引:12,自引:0,他引:12  
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.  相似文献   

15.
Answers to long-standing questions concerning the molecular mechanism of auxin action and auxin's exact functions in plant growth and development are beginning to be uncovered through studies using mutant and transgenic plants. We review recent work in this area in vascular plants. A number of conclusions can be drawn from these studies. First, auxin appears essential for cell division and viability, as auxin auxotrophs isolated in tissue culture are dependent on auxin for growth and cannot be regenerated into plants even when auxin is supplied exogenously. Secondly, plants with transgenes that alter auxin levels are able to regulate cellular auxin concentrations by synthesis and conjugation; wild-type plants are probably also capable of such regulation. Thirdly, the phenotypes of transgenic plants with altered auxin levels and of mutant plants with altered sensitivity to auxin confirm earlier physiological studies which indicated a role for auxin in regulation of apical dominance, in development of roots and vascular tissue, and in the gravitropic response. Finally, the cloning of a mutationally identified gene important for auxin action, along with accumulating biochemical evidence, hints at a major role for protein degradation in the auxin response pathway.  相似文献   

16.
17.
He YK  Xue WX  Sun YD  Yu XH  Liu PL 《Cell research》2000,10(2):151-160
The experiment was performed to evaluate the progenies of plant lines transgenic for auxin synthesis genes derived from Ri T-DNA.Four lines of the transgenic plants were self-crossed and the foreign auxin genes in plants of T5 generation were confirmed by Southern hybridization.Two lines,D1232 and D1653,showed earlier folding of expanding leaves than untransformed line and therefore had early initiation of leafy head.Leaf cuttings derived from plant of transgenic line D1653 produced more adventitious roots than the control whereas the cuttings from folding leaves had much more roots than rosette leaves at folding stage,and the cuttings from head leaves had more roots than rosette leaves at heading stage.It is demonstrated that early folding of transgenic leaf may be caused by the relatively higher concentration of auxin.These plant lines with auxin transgenes can be used for the study of hormonal regulation in differentiation and development of plant orgens and for the breeding of new variety with rapid growth trait.  相似文献   

18.
Lys-63-linked multiubiquitin chains play important roles in signal transduction in yeast and in mammals, but the functions for this type of chain in plants remain to be defined. The RING domain protein RGLG2 (for RING domain Ligase2) from Arabidopsis thaliana can be N-terminally myristoylated and localizes to the plasma membrane. It can form Lys-63-linked multiubiquitin chains in an in vitro reaction. RGLG2 has overlapping functions with its closest sequelog, RGLG1, and single mutants in either gene are inconspicuous. rglg1 rglg2 double mutant plants exhibit loss of apical dominance and altered phyllotaxy, two traits critically influenced by the plant hormone auxin. Auxin and cytokinin levels are changed, and the plants show a decreased response to exogenously added auxin. Changes in the abundance of PIN family auxin transport proteins and synthetic lethality with a mutation in the auxin transport regulator BIG suggest that the directional flow of auxin is modulated by RGLG activity. Modification of proteins by Lys-63-linked multiubiquitin chains is thus important for hormone-regulated, basic plant architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号