首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 5 毫秒
1.
We have determined the complete nucleotide and deduced amino acid sequence of the major protein core of the human heparan sulfate proteoglycan HSPG2/perlecan of basement membranes. Eighteen overlapping cDNA clones comprise 14.35 kilobase pairs (kb) of contiguous sequence with an open reading frame of 13.2 kb. The mature protein core, without the signal peptide of 21 amino acids, has a M(r) of 466,564. This large protein is composed of multiple modules homologous to the receptor of low density lipoprotein, laminin, neural cell adhesion molecules, and epidermal growth factor. Domain I, near the amino terminus, appears unique for the proteoglycan since it shares no significant homology with any other proteins. It contains three Ser-Gly-Asp sequences that could act as attachment sites for heparan sulfate glycosaminoglycans. Domain II is highly homologous to the LDL receptor and contains four repeats with perfect conservation of all 6 consecutive cysteines. Next is domain III which shares homology to the short arm of laminin A chain and contains four cysteine-rich regions intercalated among three globular domains. Domain IV, the largest module with greater than 2000 residues, contains 21 repeats of the immunoglobulin type as found in neural cell adhesion molecule. Near the beginning of this domain, there is a stretch of 29 hydrophobic amino acids which could allow the molecule to interact with the plasma membrane. Domain V, similar to the carboxyl-terminal globular G-domain of laminin A and to the related protein merosin, contains three globular regions and four EGF-like repeats. In situ hybridization and immunoenzymatic studies show a close association of this gene product with a variety of cells involved in the assembly of basement membranes, in addition to being localized within the stromal elements of various connective tissues. Our studies show that this proteoglycan is present in all vascularized tissues and suggest that this unique molecule has evolved from the utilization of modular structures with adhesive and growth regulatory properties.  相似文献   

2.
A large heparan sulfate proteoglycan of low buoyant density (p = 1.32 to 1.40 g/cm3 in 6 M-guanidine.HCl) was extracted from a tumor basement membrane with denaturing solvents and purified by chromatography and CsCl gradient centrifugation. Chemical, immunological, physical and electron microscopical analyses have demonstrated a high degree of purity and have allowed us to propose a structural model for this proteoglycan. It is composed of an 80 nm long protein core formed from a single polypeptide chain (Mr about 500,000) with intrachain disulfide bonds. This core is folded into a row of six globular domains of variable size as shown by electron microscopy after rotary shadowing and negative staining. A multidomain structure was confirmed by protease digestion experiments that allowed the isolation of a single heparan sulfate-containing peptide segment representing less than 5% of the total mass of the protein core. Electron microscopy has visualized generally three heparan sulfate chains in each molecule close to each other at one pole of the protein core. The molecular mass and length (100 to 170 nm) of the heparan sulfate chains were found to vary consistently between different preparations. The mass per length ratio (350 nm-1) indicated an extended conformation for the heparan sulfate side-chains. These structural features are distinctly different from those of the high density proteoglycan, suggesting that both forms of basement membrane heparan sulfate proteoglycan are genetically distinct and not derived from a common precursor.  相似文献   

3.
A heparan sulfate proteoglycan is a component of all basement membranes. This molecule consists of three heparan sulfate side chains linked to a large core protein of approximately 400 kDa. We have isolated seven overlapping murine cDNA clones that encode the entire mRNA sequence of 12.685 kilobases of this molecule. This sequence has a single open reading frame of 3,707 amino acids that encodes for a protein of 396 kDa. Identical or near identical matchups with nine peptide sequences derived from the core protein of the molecule isolated from the Engelbreth-Holm-Swarm tumor were found with the deduced sequence. Sequence analysis and data base comparison of the deduced sequence show the protein to consist of five different domains, most of which contain internal repeats. Domain I contains a start methionine followed by a typical signal transfer sequence and a unique segment of 172 amino acids that contains the three probable sites of heparan sulfate attachment, SGD. Domain II contains four cysteine- and acidic amino acid-rich repeats that are very similar to those found in the LDL receptor and proteins such as GP330. Domain III consists of cysteine-rich and globular regions, both of which show similarity to those in the short arm of the laminin A chain. Domain IV contains 14 repeats of the immunoglobulin superfamily that are most highly similar to the immunoglobulin-like repeats in the neural cell adhesion molecule. Domain V contains three repeats with similarity to the laminin A chain G domain that are separated by epidermal growth factor-like regions not found in the laminin A chain. As the primary structural data agree with the appearance of the molecule in the electron microscope as a series of globules separated by rods, or "beads on a string," we have adopted the name perlecan for this molecule. The variety of domains in perlecan suggest multiple interactions with other molecules.  相似文献   

4.
The effect of increasing low density lipoprotein (LDL) concentrations on the synthesis of basement membrane components was investigated in proliferating porcine aortic endothelial cells (PAEC) in culture. Basement membrane-associated heparan sulfate proteoglycan (HSPG) and fibronectin were determined by enzyme immunoassay. Low extracellular LDL-levels increase, high extracellular LDL-levels decrease the HSPG content of PAEC. Fibronectin synthesis was only slightly affected while proliferation and metabolic activity as assessed by lactate production were constant. Insulin or high extracellular glucose did not influence the effect of LDL on basement membrane components.  相似文献   

5.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

6.
Thin and ultrathin cryosections of mouse cornea were labeled with affinity-purified antibodies directed against either laminin, its central segments (domain 1), the end of its long arm (domain 3), the end of one of its short arms (domain 4), nidogen, or low density heparan sulfate proteoglycan. All basement membrane proteins are detected by indirect immunofluorescence exclusively in the epithelial basement membrane, in Descemet's membrane, and in small amorphous plaques located in the stroma. Immunoelectron microscopy using the protein A-gold technique demonstrated laminin domain 1 and nidogen in a narrow segment of the lamina densa at the junction to the lamina lucida within the epithelial basement membrane. Domain 3 shows three preferred locations at both the cellular and stromal boundaries of the epithelial basement membrane and in its center. Domain 4 is located predominantly in the lamina lucida and the adjacent half of the lamina densa. The low density heparan sulfate proteoglycan is found all across the basement membrane showing a similar uniform distribution as with antibodies against the whole laminin molecule. In Descemet's membrane an even distribution was found with all these antibodies. It is concluded that within the epithelial basement membrane the center of the laminin molecule is located near the lamina densa/lamina lucida junction and that its long arm favors three major orientations. One is close to the cell surface indicating binding to a cell receptor, while the other two are directed to internal matrix structures. The apparent codistribution of laminin domain 1 and nidogen agrees with biochemical evidence that nidogen binds to this domain.  相似文献   

7.
Type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin were localized in the basement membrane (BM) of chick retinal pigment epithelium (RPE) during various stages of eye development. At different times over a 4-17 day period after fertilization, chick embryo eyes were dissected, fixed in periodate-lysine-paraformaldehyde, and 6 micron frozen sections through the central regions of the eye were prepared. Sections were postfixed in -20 degrees C methanol and stained immediately by indirect immunofluorescence using sheep anti-mouse laminin, sheep antimouse type IV collagen, rabbit anti-mouse heparan sulfate proteoglycan, and mouse monoclonal anti-porcine plasma fibronectin. Fluorescein-labeled F(ab')2 fragments of the appropriate immunoglobulins (IgGs) were used as secondary antibodies. Laminin could be readily demonstrated in the BM of the RPE during all stages of development. The staining for type IV collagen, fibronectin, and heparan sulfate proteoglycan HSPG) was less intense than that for laminin, but was also localized in the BM along the basal side of the RPE. In addition to staining the BM, antiserum to HSPG, gave a diffuse labeling from day 9 onward, above the RPE extending into the region of the photoreceptors. Whereas the intensity of staining generally increased between day 4 and day 17 of development, the distribution of the different BM components did not change. Hence the presence of type IV collagen, laminin, fibronectin, and HSPG in the BM of RPE in vivo during all the stages of development investigated supports the concept that these macromolecules are important basic components of this, and other, BMs. Furthermore, these results indicate that the composition of the BM of RPE cells in vivo is similar to the BM material deposited by RPE cells in vitro (Turksen K, Aubin JE, Sodek JE, Kalnins VI: Collagen Rel Res, 4:413-426, 1984) and that the in vitro cultures can therefore serve as a useful model for studying BM formation.  相似文献   

8.
We localized heparan sulfate proteoglycan (HSPG) in the basement membranes of ciliary epithelium and plantar epidermis, using Cuprolinic blue to stain its side chains and an immunogold procedure to detect its core protein. In accord with most of the literature, staining with Cuprolinic blue in glutaraldehyde fixative yielded three to five times as many reaction products along the two surfaces than along the center of the lamina densa, whereas immunogold labeling for the core protein after formaldehyde fixation yielded about twice as many gold particles over the center than along the surfaces of the lamina densa. It therefore appeared that HSPG side chains predominated outside, and the core protein within, the lamina densa. To find out whether the discrepancy was true or was an artifact caused by differences in processing, we attempted to combine the two approaches on the same material. This was found possible when Cuprolinic blue was used in formaldehyde fixative, embedding was in LR White, and immunogold labeling was performed on thin sections as usual. Under these conditions, both Cuprolinic blue reaction products and immunogold particles predominated over the lamina densa in the two basement membranes under study. Moreover, evidence was present that reaction products and immunogold particles either overlapped each other or were closely associated. The lens capsule (a thick basement membrane) also showed their co-localization. The discrepancy initially observed between side chains and core protein location was attributed to differences in processing, since Cuprolinic blue staining had been carried out in the course of glutaraldehyde fixation whereas immunogold labeling was done after formaldehyde fixation. The results lead to two conclusions. First, processing differences may alter the localization of HSPG and possibly other proteoglycans. Second, both HSPG side chains and core protein are localized in the same sites within basement membrane.  相似文献   

9.
A variety of heparan sulfate proteoglycans (HSPG) have been identified on cell surfaces and in basement membrane (BM). To more fully characterize HSPG in human skin BM, we used two monoclonal antibodies (MAb) directed against epitopes of the core protein of a high molecular weight HSPG isolated from murine EHS tumor. Indirect immunofluorescence revealed linear distribution of HSPG within all skin BM, and within BM of all other human organs investigated. In a study of the ontogeny of HSPG in human skin BM, HSPG was detectable as early as 54 gestational days, comparable with other ubiquitous BM components, such as laminin and type IV collagen. Immunoelectron microscopy on adult skin and neonatal foreskin showed staining primarily within the lamina densa (LD) and sub-lamina densa regions of the dermoepidermal junction (DEJ) and vascular BM. In neonatal foreskin, additional staining was noted of basilar cytoplasmic membranes of keratinocytes, endothelial cells, and pericytes. We conclude that the core protein of a high molecular weight HSPG is ubiquitous in human BM, appears in fetal skin on or before 54 days, and is present primarily in the regions of the LD and sub-LD.  相似文献   

10.
《The Journal of cell biology》1994,127(6):1703-1715
Phosphacan is a chondroitin sulfate proteoglycan produced by glial cells in the central nervous system, and represents the extracellular domain of a receptor-type protein tyrosine phosphatase (RPTP zeta/beta). We previously demonstrated that soluble phosphacan inhibited the aggregation of microbeads coated with N-CAM or Ng-CAM, and have now found that soluble 125I-phosphacan bound reversibly to these neural cell adhesion molecules, but not to a number of other cell surface and extracellular matrix proteins. The binding was saturable, and Scatchard plots indicated a single high affinity binding site with a Kd of approximately 0.1 nM. Binding was reduced by approximately 15% after chondroitinase treatment, and free chondroitin sulfate was only moderately inhibitory, indicating that the phosphacan core glycoprotein accounts for most of the binding activity. Immunocytochemical studies of embryonic rat spinal phosphacan, Ng-CAM, and N-CAM have overlapping distributions. When dissociated neurons were incubated on dishes coated with combinations of phosphacan and Ng-CAM, neuronal adhesion and neurite growth were inhibited. 125I-phosphacan bound to neurons, and the binding was inhibited by antibodies against Ng-CAM and N-CAM, suggesting that these CAMs are major receptors for phosphacan on neurons. C6 glioma cells, which express phosphacan, adhered to dishes coated with Ng-CAM, and low concentrations of phosphacan inhibited adhesion to Ng-CAM but not to laminin and fibronectin. Our studies suggest that by binding to neural cell adhesion molecules, and possibly also by competing for ligands of the transmembrane phosphatase, phosphacan may play a major role in modulating neuronal and glial adhesion, neurite growth, and signal transduction during the development of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号