首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tetraspanins (or proteins from the transmembrane 4 superfamily, TM4SF) form membrane complexes with integrin receptors and are implicated in integrin-mediated cell migration. Here we characterized cellular localization, structural composition, and signaling properties of alpha3beta1-TM4SF adhesion complexes. Double-immunofluorescence staining showed that various TM4SF proteins, including CD9, CD63, CD81, CD82, and CD151 are colocalized within dot-like structures that are particularly abundant at the cell periphery. Differential extraction in conjunction with chemical cross-linking indicated that the cell surface fraction of alpha3beta1-TM4SF protein complexes may not be directly linked to the cytoskeleton. However, in cells treated with cytochalasin B alpha3beta1-TM4SF protein complexes are relocated into intracellular vesicles suggesting that actin cytoskeleton plays an important role in the distribution of tetraspanins into adhesion structures. Talin and MARCKS are partially codistributed with TM4SF proteins, whereas vinculin is not detected within the tetraspanin-containing adhesion structures. Attachment of serum-starved cells to the immobilized anti-TM4SF mAbs induced dephosphorylation of focal adhesion kinase (FAK). On the other hand, clustering of tetraspanins in cells attached to collagen enhanced tyrosine phosphorylation of FAK. Furthermore, ectopic expression of CD9 in fibrosarcoma cells affected adhesion-induced tyrosine phosphorylation of FAK, that correlated with the reorganization of the cortical actin cytoskeleton. These results show that tetraspanins can modulate integrin signaling, and point to a mechanism by which TM4SF proteins regulate cell motility.  相似文献   

2.
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.  相似文献   

3.
KAI1/CD82 protein is a member of the tetraspanin superfamily and has been rediscovered as a cancer metastasis suppressor. The mechanism of KAI1/CD82-mediated suppression of cancer metastasis remains to be established. In this study, we found that migration of the metastatic prostate cancer cell line Du145 was substantially inhibited when KAI1/CD82 was expressed. The expression of focal adhesion kinase (FAK) and Lyn, a Src family tyrosine kinase and substrate of FAK, was up-regulated at both RNA and protein levels upon KAI1/CD82 expression. The activation of FAK and Lyn, however, remained unchanged in Du145-KAI1/CD82 cells. As a downstream target of FAK-Lyn signaling, the p130CAS (Crk-associated substrate) protein was decreased upon the expression of KAI1/CD82. Consequently, less p130CAS-CrkII complex, which functions as a "molecular switch" in cell motility, was formed in Du145-KAI1/CD82 cells. To confirm that the p130CAS-CrkII complex is indeed important for the motility inhibition by KAI1/CD82, overexpression of p130CAS in Du145-KAI1/CD82 cells increased the formation of p130CAS-CrkII complex and largely reversed the KAI1/CD82-mediated inhibition of cell motility. Taken together, our studies indicate the following: 1) signaling of FAK-Lyn-p130CAS-CrkII pathway is altered in KAI1/CD82-expressing cells, and 2) p130CAS-CrkII coupling is required for KAI1/CD82-mediated suppression of cell motility.  相似文献   

4.
5.
New insights have emerged about the expression, during testicular cord formation, of the ADAM (a disintegrin and metalloprotease) domain family of proteins that combines both cell surface adhesion and proteolytic activity; this family includes integrins alpha3beta1 and alpha6beta1 and tetraspanins, a distinct family of proteins containing four transmembrane domains, a small and a large extracellular loop, and short cytoplasmic tails. ADAM3 (cyritestin), ADAM5, ADAM6, and ADAM15 are expressed in fetal rat testes. In contrast, the expression of the ADAM1/ADAM2 pair (fertilin alpha/fertilin beta, respectively) is not detected in fetal testis. Yet the expression of ADAM1 starts immediately after birth, and is followed within 24 hr by the expression of ADAM2. Therefore, the ADAM1/ADAM2 heterodimer is visualized far in advance of the meiotic and spermiogenic phase of spermatogenesis. A similar expression pattern was observed for integrin subunits alpha3, alpha6, and beta1, as well as for tetraspanins CD9, CD81, and CD98; the latter is a single-pass integrin subunit beta1-binding protein. ADAM2, integrin subunits alpha3, alpha6, and beta1, and tetraspanin CD9 and CD81 immunoreactive sites are observed in prespermatogonia (also known as primordial germ cells or gonocytes). A model is proposed in which the ADAM-integrin-tetraspanin complex, known to constitute a network of membrane microdomains called the tetraspanin web, may be involved in the migration of prespermatogonia from the center to the periphery of the testicular cords and in the reinitiation of mitotic activity during the initial wave of spermatogenesis. A complementary model consists in the rearrangement of the tetraspanin web in prespermatogonia/spermatogonia undergoing spontaneous or Fas-induced apoptosis upon coculturing with Sertoli cells. In this model, the cellular site involved in the formation of preapoptotic bodies is devoid of tetraspanin-integrin clusters, in contrast with nonapoptotic cells, which display a diffuse circumferential distribution. In apoptotic prespermatogonia, immunoreactive clusters are restricted to sites where the attachment of prespermatogonia/spermatogonia to Sertoli cell surfaces is still preserved.  相似文献   

6.
The alpha 3 beta 1 integrin shows strong, stoichiometric, direct lateral association with the tetraspanin CD151. As shown here, an extracellular CD151 site (QRD(194-196)) is required for strong (i.e., Triton X-100-resistant) alpha 3 beta 1 association and for maintenance of a key CD151 epitope (defined by monoclonal antibody TS151r) that is blocked upon alpha 3 integrin association. Strong CD151 association with integrin alpha 6 beta 1 also required the QRD(194-196) site and masked the TS151r epitope. For both alpha 3 and alpha 6 integrins, strong QRD/TS151r-dependent CD151 association occurred early in biosynthesis and involved alpha subunit precursor forms. In contrast, weaker associations of CD151 with itself, integrins, or other tetraspanins (Triton X-100-sensitive but Brij 96-resistant) were independent of the QRD/TS151r site, occurred late in biosynthesis, and involved mature integrin subunits. Presence of the CD151-QRD(194-196)-->INF mutant disrupted alpha 3 and alpha 6 integrin-dependent formation of a network of cellular cables by Cos7 or NIH3T3 cells on basement membrane Matrigel and markedly altered cell spreading. These results provide definitive evidence that strong lateral CD151-integrin association is functionally important, identify CD151 as a key player during alpha 3 and alpha 6 integrin-dependent matrix remodeling and cell spreading, and support a model of CD151 as a transmembrane linker between extracellular integrin domains and intracellular cytoskeleton/signaling molecules.  相似文献   

7.
Embryo implantation and placentation are dynamic cellular events that require not only synchrony between the maternal environment and the embryo, but also complex cell-cell communication amongst the implanting blastocyst and the receptive endometrium through integrins, a large family of proteins involved in the attachment, migration, invasion and control of cellular functions. Integrins display dynamic temporal and spatial patterns of expression by the trophoblast cells during early pregnancy in humans. However, the precise mechanism of embryo implantation and the modulation of the integrin receptors during blastocyst attachment and further implantation remain elusive in the humans. The present study elucidates the expression and hormonal modulation of fibronectin, vitronectin and laminin integrin receptors by estradiol and IL-1alpha in human trophoblast cells. Human first trimester trophoblast cells showed the induction of the classical estrogen receptor (ER)-alpha by its own ligand, estradiol. Treatment with either estradiol or IL-1alpha induced the expressions of alpha4, alpha5, alpha6 and alpha(v) integrin receptor subunits at both the mRNA and protein levels, while expression of beta1 remained unaltered. Furthermore, estradiol upregulated the expression of IL-1alpha, thereby suggesting the possibility that estrogen may either directly or via the proinflammatory cytokine induces the expression of the cell surface integrin receptors. The findings delineate the role of hormones and the cytokines in modulating the adhesiveness and attachment of the trophoblast cells. This may reflect the in vivo scenario where the implanting embryo is surrounded by a hormone-cytokine rich uterine microenvironment that may precisely regulate the expression of integrins and thereby facilitate implantation.  相似文献   

8.
Tetraspanins associate on the cell membrane with several transmembrane proteins, including members of the integrin superfamily. The tetraspanin CD9 has been implicated in cell motility, metastasis, and sperm-egg fusion. In this study we characterize the first CD9 conformation-dependent epitope (detected by monoclonal antibody (mAb) PAINS-13) whose expression depends on changes in the activation state of associated beta(1) integrins. MAb PAINS-13 precipitates CD9 under conditions that preserve the association of this tetraspanin with integrins, but not under conditions that disrupt these interactions. Induction of activation of beta(1) integrins by temperature, divalent cation Mn(2+), or mAb TS2/16 correlated with enhanced expression of the PAINS-13 epitope on a variety of cells. Through the use of different K562 myeloid leukemia transfectant cells expressing specific members of the beta(1) integrin subfamily we show that the expression of the PAINS-13 epitope depends on CD9 association with alpha(6)beta(1) integrin. The mAb PAINS-13 reactivity has been mapped to the CD9 region comprising residues 112-154 in the NH(2) half of the large extracellular loop. Also, we show that the CD9 conformation recognized by mAb PAINS-13 is functionally relevant in beta(1) integrin-mediated cellular processes including wound healing migration, tubular morphogenesis, cell adhesion and spreading and in signal transduction involving phosphatidylinositol 3-kinase activation.  相似文献   

9.
The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored cellular receptor (uPAR) promotes plasminogen activation and the efficient generation of pericellular proteolytic activity. We demonstrate here that expression of the tetraspanin CD82/KAI1 (a tumor metastasis suppressor) leads to a profound effect on uPAR function. Pericellular plasminogen activation was reduced by approximately 50-fold in the presence of CD82, although levels of components of the plasminogen activation system were unchanged. uPAR was present on the cell surface and molecularly intact, but radioligand binding analysis with uPA and anti-uPAR antibodies revealed that it was in a previously undetected cryptic form unable to bind uPA. This was not due to direct interactions between uPAR and CD82, as they neither co-localized on the cell surface nor could be co-immunoprecipitated. However, expression of CD82 led to a redistribution of uPAR to focal adhesions, where it was shown by double immunofluorescence labeling to co-localize with the integrin alpha(5)beta(1), which was also redistributed in the presence of CD82. Co-immunoprecipitation experiments showed that, in the presence of CD82, uPAR preferentially formed stable associations with alpha(5)beta(1), but not with a variety of other integrins, including alpha(3)beta(1). These data suggest that CD82 inhibits the proteolytic function of uPAR indirectly, directing uPAR and alpha(5)beta(1) to focal adhesions and promoting their association with a resultant loss of uPA binding. This represents a novel mechanism whereby tetraspanins, integrins, and uPAR, systems involved in cell adhesion and migration, cooperate to regulate pericellular proteolytic activity and may suggest a mechanism for the tumor-suppressive effects of CD82/KAI1.  相似文献   

10.
EWI-2, a cell surface immunoglobulin SF protein of unknown function, associates with tetraspanins CD9 and CD81 with high stoichiometry. Overexpression of EWI-2 in A431 epidermoid carcinoma cells did not alter cell adhesion or spreading on laminin-5, and had no effect on reaggregation of cells plated on collagen I (alpha2beta1 integrin ligand). However, on laminin-5 (alpha3beta1 integrin ligand), A431 cell reaggregation and motility functions were markedly impaired. Immunodepletion and reexpression experiments revealed that tetraspanins CD9 and CD81 physically link EWI-2 to alpha3beta1 integrin, but not to other integrins. CD81 also controlled EWI-2 maturation and cell surface localization. EWI-2 overexpression not only suppressed cell migration, but also redirected CD81 to cell filopodia and enhanced alpha3beta1-CD81 complex formation. In contrast, an EWI-2 chimeric mutant failed to suppress cell migration, redirect CD81 to filopodia, or enhance alpha3beta1-CD81 complex formation. These results show how laterally associated EWI-2 might regulate alpha3beta1 function in disease and development, and demonstrate how tetraspanin proteins can assemble multiple nontetraspanin proteins into functional complexes.  相似文献   

11.
Regulation of cell migration is an important feature of tetraspanin CD151. Although it is well established that CD151 physically associates with integrins, the mechanism by which CD151 regulates integrin-dependent cell migration is basically unknown. Given the fact that CD151 is localized in both the plasma membrane and intracellular vesicles, we found that CD151 and its associated alpha3beta1, alpha5beta1, and alpha6beta1 integrins undergo endocytosis and accumulate in the same intracellular vesicular compartments. CD151 contains a YRSL sequence, a YXXvarphi type of endocytosis/sorting motif, in its C-terminal cytoplasmic domain. Mutation of this motif markedly attenuated CD151 internalization. The loss of CD151 trafficking completely abrogated CD151-promoted cell migration on extracellular matrices such as laminin and diminished the internalization of its associated integrins, indicating a critical role for integrin trafficking in regulating cell motility. In conclusion, the YXXvarphi motif-mediated internalization of CD151 promotes integrin-dependent cell migration by modulating the endocytosis and/or vesicular trafficking of its associated integrins.  相似文献   

12.
The basement membrane protein laminin-5 supports tumor cell adhesion and motility and is implicated at multiple steps of the metastatic cascade. Tetraspanin CD151 engages in lateral, cell surface complexes with both of the major laminin-5 receptors, integrins alpha3beta1 and alpha6beta4. To determine the role of CD151 in tumor cell responses to laminin-5, we used retroviral RNA interference to efficiently silence CD151 expression in epidermal carcinoma cells. Near total loss of CD151 had no effect on steady state cell surface expression of alpha3beta1, alpha6beta4, or other integrins with which CD151 associates. However, CD151-silenced carcinoma cells displayed markedly impaired motility on laminin-5, accompanied by unusually persistent lateral and trailing edge adhesive contacts. CD151 silencing disrupted alpha3beta1 integrin association with tetraspanin-enriched microdomains, reduced the bulk detergent extractability of alpha3beta1, and impaired alpha3beta1 internalization in cells migrating on laminin-5. Both alpha3beta1- and alpha6beta4-dependent cell adhesion to laminin-5 were also impaired in CD151-silenced cells. Reexpressing CD151 in CD151-silenced cells reversed the adhesion and motility defects. Finally, loss of CD151 also impaired migration but not adhesion on substrates other than laminin-5. These data show that CD151 plays a critical role in tumor cell responses to laminin-5 and reveal promotion of integrin recycling as a novel potential mechanism whereby CD151 regulates tumor cell migration.  相似文献   

13.
Hematopoietic stem/progenitor cell (HSPC) interactions with the bone marrow microenvironment are important for maintaining HSPC self-renewal and differentiation. In recent work, we identified the tetraspanin protein, CD82, as a regulator of HPSC adhesion and homing to the bone marrow, although the mechanism by which CD82 mediated adhesion was unclear. In the present study, we determine that CD82 expression alters cell–matrix adhesion, as well as integrin surface expression. By combining the superresolution microscopy imaging technique, direct stochastic optical reconstruction microscopy, with protein clustering algorithms, we identify a critical role for CD82 in regulating the membrane organization of α4 integrin subunits. Our data demonstrate that CD82 overexpression increases the molecular density of α4 within membrane clusters, thereby increasing cellular adhesion. Furthermore, we find that the tight packing of α4 into membrane clusters depend on CD82 palmitoylation and the presence of α4 integrin ligands. In combination, these results provide unique quantifiable evidence of CD82’s contribution to the spatial arrangement of integrins within the plasma membrane and suggest that regulation of integrin density by tetraspanins is a critical component of cell adhesion.  相似文献   

14.
A search for genes expressed in activated T cells revealed that the nonintegrin, 67-kDa laminin binding protein (p67 LBP) is expressed on the surface of a subset (10-15%) of activated peripheral blood T cells. Surface p67 LBP expression is detectable by FACS using the anti-p67 LBP mAb, MLuC5, within 6 h of T cell activation with phorbol dibutyrate and ionomycin, peaks 18-36 h postactivation, and persists for 7-10 days. The subset of T cells expressing p67 LBP is composed of mature, single-positive cells (85% CD4+8-, 15% CD4-8+) of memory cell phenotype (100% CD45 RO+/CD45 RA-). The p67 LBP+ T cells also express the integrin alpha6 chain (CD49f), which is known to associate with p67 LBP on tumor cells. In addition, the p67 LBP+ T cells express the integrin beta1, which associates with alpha6 in the laminin-specific integrin receptor very late activation Ag (VLA)-6 (alpha6beta1). Expression of an exogenous cDNA encoding the 37-kDa LBP precursor (p37 LBPP) confers p67 LBP surface expression on a p67 LBP-negative Jurkat T cell line (B2.7). Expression of p67 LBP induces B2.7 transfectants to adhere to laminin, but avid laminin binding depends on coexpression of VLA-6. Taken together, these data indicate that p67 LBP is an activation-induced surface structure on memory T cells that, together with VLA-6, mediates cellular adherence to laminin.  相似文献   

15.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

16.
CD98hc (SLC3A2) constitutively and specifically associates with beta(1) integrins and is highly expressed on the surface of human tumor cells irrespective of the tissue of origin. We have found here that expression of CD98hc promotes both anchorage- and serum-independent growth. This oncogenic activity is dependent on beta(1) integrin-mediated phosphoinositol 3-hydroxykinase stimulation and the level of surface expression of CD98hc. Using chimeras of CD98hc and the type II membrane protein CD69, we show that the transmembrane domain of CD98hc is necessary and sufficient for integrin association in cells. Furthermore, CD98hc/beta(1) integrin association is required for focal adhesion kinase-dependent phosphoinositol 3-hydroxykinase activation and cellular transformation. Amino acids 82-87 in the putative cytoplasmic/transmembrane region appear to be critical for the oncogenic potential of CD98hc and provide a novel mechanism for tumor promotion by integrins. These results explain how high expression of CD98hc in human cancers contributes to transformation; furthermore, the transmembrane association of CD98hc and beta(1) integrins may provide a new target for cancer therapy.  相似文献   

17.
Boyd ND  Chan BM  Petersen NO 《Biochemistry》2002,41(23):7232-7240
Downregulation of several signaling pathways, such as those stimulated by growth factor receptors, occurs by internalization of signaling receptors through clathrin-coated pits. The first step in internalization or endocytosis is interaction with AP-2, which results in coated pit formation by assembly of clathrin to AP-2. Changes in endocytosis are reflected in the distribution of AP-2 molecules at the cell surface. Integrins are receptors which mediate attachment to the extracellular matrix and also stimulate numerous intracellular signaling pathways; however, it is not known how signaling through integrins is terminated or downregulated. Endocytosis through clathrin-coated pits offers an attractive mechanism for this. This work explores the relationship between AP-2 and beta(1) integrins. RD cells grown for 24 h on collagen or laminin exhibit a redistribution of AP-2 to the cell periphery relative to those grown on fibronectin or polylysine. The total AP-2 protein levels in the cells are unaffected. Blocking alpha(1)beta(1) integrin ligand binding on collagen prevents this redistribution fully. On laminin where alpha(1)beta(1) and alpha(6)beta(1) integrins are engaged, both receptors must be simultaneously blocked to prevent AP-2 redistribution, confirming that the redistribution depends on the specific engagement of the receptors. Immunofluorescence reveals that the majority of alpha(1)beta(1) integrins colocalize with alpha(6)beta(1) integrins in linear structures identified as focal adhesions. A separate fraction of alpha(1)beta(1) integrins colocalize with AP-2 in coated pits. Interestingly, alpha(6)beta(1) integrins are not located in coated pits, demonstrating that integrin colocalization with AP-2 is not necessary to induce redistribution of AP-2.  相似文献   

18.
Transforming growth factor beta1 (TGFbeta) simultaneously induces the expression of fibronectin, fibronectin receptor, laminin, and laminin receptor (alpha6beta1 integrin) in the human colon cancer cell line Moser (Int J Cancer, 57:742, 1994). Induction of fibronectin and induction of fibronectin receptor by TGFB are tightly coupled, and disrupting fibronectin induction disrupts the induction of fibronectin receptor and cellular adhesion to fibronectin (J Cellular Physiol, 170:138, 1997). We recently demonstrated the efficacy of using antisense chain-specific laminin RNA expression vectors to disrupt the induction by TGFP of the multichain laminin molecule (J Cellular Physiol, 178:296, 1999). We now show in this report that Moser cells used alpha6 and beta1 integrins to adhere to laminin, and, as is the fibronectin and fibronectin receptor system, disrupting the induction by TGFbeta of the ligand laminin by the expression of antisense laminin A chain RNA disrupted the induction of 125I-laminin binding and cellular adhesion to laminin. Disrupting laminin induction also blocked the induction of alpha6 and beta1 integrin laminin receptor by TGFbeta. We conclude that disrupting the induction of the ligand laminin by TGFbeta disrupts TGFbeta-regulated laminin receptor function by suppressing the induction of alpha6 and beta1 integrins. Therefore, targeted disruption of the ligand laminin may be an effective means in disrupting the function of both the ligand and its receptor in cells that utilize the laminin and laminin receptor system in malignant cell behavior.  相似文献   

19.
Rotavirus infection of permissive cells is a multi-step process that requires interaction with several cell surface receptors. Integrins alpha2beta1, alpha4beta1, alphaXbeta2, and alphavbeta3 are involved in the attachment and entry into permissive cells for many rotavirus strains. However, possible roles of known partners of these integrins in this process have not been studied. Here, the specificities of new monoclonal antibodies directed to beta1 and beta2 integrins were determined using integrin-transfected cells. The ability of monoclonal antibodies to integrin partners CD82, CD151, CD321, and CD322 to bind rotavirus-permissive cell lines (MA104, Caco-2, and RD) and K562 cells expressing or lacking alpha4beta1 also was investigated. CD82 and CD151 were expressed on K562, alpha4-K562, and RD cells. CD321-specific antibodies bound K562, alpha4-K562, MA104, and Caco-2 cells. CD322 expression was detected on MA104 but not Caco-2 cells. Antibodies to CD82, CD151, CD321, and CD322 that bound these cells were investigated for their ability to inhibit cellular attachment and entry by rotaviruses. Antibody blockade of these integrin-associated proteins did not affect cell attachment or entry of the integrin-using rhesus rotavirus RRV or porcine rotavirus CRW-8, which uses alpha4beta1 integrin for infection. Antibody blockade of CD322 did not alter cell attachment or infectivity by human rotavirus strain RV-3, so RV-3 infection was independent of CD322. Overall, these studies indicate that CD82, CD151, CD321, and CD322 are unlikely to play a role in rotavirus-cell binding or entry.  相似文献   

20.
As observed previously, tetraspanin palmitoylation promotes tetraspanin microdomain assembly. Here, we show that palmitoylated integrins (alpha3, alpha6, and beta4 subunits) and tetraspanins (CD9, CD81, and CD63) coexist in substantially overlapping complexes. Removal of beta4 palmitoylation sites markedly impaired cell spreading and signaling through p130Cas on laminin substrate. Also in palmitoylation-deficient beta4, secondary associations with tetraspanins (CD9, CD81, and CD63) were diminished and cell surface CD9 clustering was decreased, whereas core alpha6beta4-CD151 complex formation was unaltered. There is also a functional connection between CD9 and beta4 integrins, as evidenced by anti-CD9 antibody effects on beta4-dependent cell spreading. Notably, beta4 palmitoylation neither increased localization into "light membrane" fractions of sucrose gradients nor decreased solubility in nonionic detergents-hence it does not promote lipid raft association. Instead, palmitoylation of beta4 (and of the closely associated tetraspanin CD151) promotes CD151-alpha6beta4 incorporation into a network of secondary tetraspanin interactions (with CD9, CD81, CD63, etc.), which provides a novel framework for functional regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号