首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1cys-free background and the effect of intracellular Cd2+ or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd2+ ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406Ccys-free and Q409Ccys-free. Cd2+ ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1cys-free background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399 to Gln409 in homologous subunits move far apart, as expected from the gating in K+ channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
In the present work, we studied theoretically the noncovalent interaction of six nucleobases (NBs), namely uracil (U), thymine (T), cytosine (C), 5-methylcytosine (m5C), adenine (A) and guanine (G), with fullerene C60 and two closed-end SWNT models of armchair (ANT) and zigzag (ZNT) chirality. The calculations were performed using the functional PBE of general gradient approximation, empirical dispersion correction by Grimme, in conjunction with the DNP double numerical basis set. For comparison purposes, two sets of calculations were carried out: the first one, under vacuum conditions, and the second one, in aqueous medium. We analysed the computed geometries and binding energies for NB + CNC complexes, the plots of HOMO and LUMO orbitals and the values of corresponding HOMO-LUMO gap energies. In particular, we found that under vacuum conditions, the interaction strength decreases in the order of G > m5C > A > C > T > U for C60 and ZNT, and G > A > m5C > C > T > U for ANT. In aqueous medium, the binding energies decrease in the order of G > A > m5C > T > C > U for C60 and ANT, and G > A > T > m5C > C > U for ZNT.  相似文献   

3.
Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.  相似文献   

4.
Elementary K+ currents through cardiac outwardly rectifying K+ channels were recorded in insideout patches excised from cultured neonatal rat cardiocytes at 19 °C and at 9 °C. By studying the inhibitory effects of tetraethylammonium (TEA), quinidine and verapamil, the properties of this novel type of K+ channel were further characterized. Internal TEA (50 mmol/1) evoked a reversible decline of iunit to 62.7 + 2.7% of control (at –7 mV), without significant changes of open state kinetics, indicating a blockade of the open K+ pore with kinetics too fast to be resolvable at 1 kHz. This TEA blockade was e-fold voltage-dependent, with a decrease of the apparent KD( TEA) from 102 mmol/1 at –37 mV to 65 mmol/1 at +33 mV and, furthermore, became accentuated on lowering the internal K+ concentration. Thus, TEA competes with the permeant K+ for a site located in some distance from the cytoplasmic margin, within the K+ pore. Quinidine (100 mol/l), like verapamil (40 mol/1) reversibly depressed iunit to about 80% of the control value (at –7 mV), but drug-induced fast flicker blockade proved voltage-insensitive between –27 mV and +23 mV These drugs gain access to a portion of the pore distinct from the TEA binding site whose occupancy by drugs likewise blocks K+ permeation. Both drugs showed a greater potency to depress Po which, with quinidine,decreased reversibly to38.6 ± 11.1% (at –7 mV) and, with verapamil to 24.9 ± 9.1%(at –7 mV), mainly by an increase of the prolonged closed state (C,). This alteration of the gating process also includes a sometimes dramatic shortening of the open state. Most probably, cardiac K(outw.-rect.) +K+ outw.-rect. channels possess a second drug-sensitive site whose occupancy by quinidine or verapamil may directly or allosterically stabilize their non-conducting configuration. Correspondence to: M. Kohlhardt  相似文献   

5.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K o + ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K o + ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K o + -dependent, and the suggestion has been made that pH and K o + may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K o + . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.  相似文献   

6.
Extracellular acidification and reduction of extracellular K+ are known to decrease the currents of some voltage-gated potassium channels. Although the macroscopic conductance of WT hKv1.5 channels is not very sensitive to [K+]o at pH 7.4, it is very sensitive to [K+]o at pH 6.4, and in the mutant, H463G, the removal of K+ o virtually eliminates the current at pH 7.4. We investigated the mechanism of current regulation by K+ o in the Kv1.5 H463G mutant channel at pH 7.4 and the wild-type channel at pH 6.4 by taking advantage of Na+ permeation through inactivated channels. Although the H463G currents were abolished in zero [K+]o, robust Na+ tail currents through inactivated channels were observed. The appearnnce of H463G Na+ currents with a slow rising phase on repolarization after a very brief depolarization (2 ms) suggests that channels could activate directly from closed-inactivated states. In wild-type channels, when intracellular K+ was replaced by NMG+ and the inward Na+ current was recorded, addition of 1 mM K+ prevented inactivation, but changing pH from 7.4 to 6.4 reversed this action. The data support the idea that C-type inactivation mediated at R487 in Kv1.5 channels is influenced by H463 in the outer pore. We conclude that both acidification and reduction of [K+]o inhibit Kv1.5 channels through a common mechananism (i.e., by increasing channel inactivation, which occurs in the resting state or develops very rapidly after activation).  相似文献   

7.
We have recently examined slow inactivation of Shab channels. Here we extend our characterization of Shab slow inactivation by presenting the properties of recovery from inactivation. The observations support our proposal that Shab reaches the same inactivated state either from open or closed states and suggest that closed and open state inactivation share the same mechanism. Regarding the latter, we also show that external K+ and TEA slow down recovery from inactivation in agreement with the hypothesis that the mechanism of Shab inactivation qualitatively differs from C-type inactivation.  相似文献   

8.
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate.  相似文献   

9.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

10.
With the aim of understanding the relation between structure and gating of CNGA1 channels from bovine rod, an extensive cysteine scanning mutagenesis was performed. Each residue from Phe-375 to Val-424 was mutated into a cysteine one at a time and the modification caused by various sulfhydryl reagents was analyzed. The addition of the mild oxidizing agent copper phenanthroline (CuP) in the open (presence of 1 mM cGMP) or closed state locked the channel in the respective states. A subsequent treatment with the reducing agent DTT restored normal gating fully in the open state and partially in the closed state. This action of CuP was not observed when F380 was mutated into a cysteine in the cysteine-free CNGA1 channel and in the double mutant C314S&F380C. These observations suggest that these effects are mediated by the formation of a disulfide bond (S-S) between F380C and the endogenous Cys-314 in the S5 segment. It can be rationalized by supposing that during gating the S6 segment rotates anticlockwise-when viewed from the extracellular side-by approximately 30 degrees .  相似文献   

11.
Summary In inside-out patches from cultured neonatal rat heart cells, single Na+ channel currents were analyzed under the influence of the cardiotonic compound DPI 201-106 (DPI), a putative novel channel modifier. In absence of DPI, normal cardiac single Na+ channels studied at –30 mV have one open state which is rapidly left with a rate constant of 826.5 sec–1 at 20°C during sustained depolarization., Reconstructed macroscopic currents relax completely with 7 to 10 msec. The current decay fits a single exponential. A considerable percentage of openings may occur during relaxation of the macroscopic current. In patches treated with 3×10–6 m DPI in the pipette solution, stepping to –30 mV results in drastically prolonged and usually repetitive openings. This channel activity mostly persists over the whole depolarization (usually 160 msec in duration) but is abruptly terminated on clamping back the patch to the holding potential. Besides these modified events, apparently normal openings occur. The open time distribution of DPI-treated Na+ channels is the sum of two exponentials characterized by time constants of 0.85 msec (which is close to the time constant found in the control patches, 1.21 msec) and 12 msec. Moreover, DPI-modified Na+ channels exhibit a sustained high, time-independent open probability. Similar to normal Na+ channels, the mean number of open DPI-modified Na+ channels is voltage-dependent and increases on shifting the holding potential in the hyperpolarizing direction. These kinetic changes suggest an elimination of Na+ channel inactivation as it may follow from an interaction of DPI with Na+ channels.  相似文献   

12.
Dihydropyridines (DHPs) are well known for their effects on L-type voltage-dependent Ca2+ channels. However, these drugs also affect other voltage-dependent ion channels, including Shaker K+ channels. We examined the effects of DHPs on the Shaker K+ channels expressed in Xenopus oocytes. Intracellular applications of DHPs quickly and reversibly induced apparent inactivation in the Shaker K+ mutant channels with disrupted N- and C-type inactivation. We found that DHPs interact with the open state of the channel as evidenced by the decreased mean open time. The DHPs effects are voltage-dependent, becoming more effective with hyperpolarization. A model which involves binding of two DHP molecules to the channel is consistent with the results obtained in our experiments.  相似文献   

13.
Summary Elementary Na+ currents were recorded at 9°C in inside-out patches from cultured neonatal rat heart myocytes. In characterizing the sensitivity of cooled, slowly inactivating cardiac Na+ channels to several antiarrhythmic drugs including propafenone, lidocaine and quinidine, the study aimed to define the role of Na+ inactivation for open channel blockade.In concentrations (1–10 mol/liter) effective to depressNP o significantly, propafenone completely failed to influence the open state of slowly inactivating Na+ channels. With 1 mol/liter, open changed insignificantly to 96±7% of the control. Even a small number of ultralong openings of 6 msec or longer exceeding open of the whole ensemble several-fold and attaining open (at –45 mV) in cooled, (-)-DPI-modified, noninactivating Na+ channels proved to be drug resistant and could not be flicker-blocked by 10 mol/liter propafenone. The same drug concentration induced in(-)-DPI-modified Na+ channels a discrete block with association and dissociation rate constants of 16.1 ± 5.3 × 106 mol–1 sec–1 and 675 ± 25 sec–1, respectively. Quinidine, known to have a considerable affinity for activated Na+ channels, in lower concentrations (5 mol/liter) left open unchanged or reduced, in higher concentrations (10 mol/liter) open only slightly to 81% of the predrug value whereasNP o declined to 30%, but repetitive blocking events during the conducting state could never be observed. Basically the same drug resistance of the open state was seen in cardiac Na+ channels whose open-state kinetics had been modulated by the cytoplasmic presence of F ions. But in this case, propafenone reduced reopening and selectively abolished a long-lasting open state. This drug action is unlikely related to the inhibitory effect onNP o since hyperpolarization and the accompanying block attenuation did not restore the channel kinetics. It is concluded that cardiac Na+ channels cannot be flicker-blocked by antiarrhythmic drugs unless Na+ inactivation is removed.  相似文献   

14.
Multiple genes of the TASK subfamily of two-pore domain K+ channels are reported to be expressed in rat glomerulosa cells. To determine which TASK isoforms contribute to native leak channels controlling resting membrane potential, patch-clamp studies were performed to identify biophysical and pharmacological characteristics of macroscopic and unitary K+ currents diagnostic of recombinant TASK channel isoforms. Results indicate K+ conductance (gK+) is mediated almost exclusively by a weakly voltage-dependent (leak) K+ channel closely resembling TASK-3. Leak channels exhibited a unitary conductance approximating that expected for TASK-3 under the recording conditions employed, brief mean open times and a voltage-dependent open probability. Extracellular H+ induced voltage-independent inhibition of gK+, exhibiting an IC50 of 56 nM (pH 7.25) and a Hill coefficient of 0.75. Protons inhibited leak channel open probability (Po) by promoting a long-lived closed state (τ > 500 ms). Extracellular Zn2+ mimicked the effects of H+; inhibition of gK+ exhibited an IC50 of 41 μM with a Hill coefficient of 1.26, inhibiting channel gating by promoting a long-lived closed state. Ruthenium red (5 μM) inhibited gK+ by 75.6% at 0 mV. Extracellular Mg2+ induced voltage-dependent block of gK+, inhibiting unitary current amplitude without affecting mean open time. Bupivacaine induced voltage-dependent block of gK+, exhibiting IC50 values of 116 μM at −100 mV and 28 μM at 40 mV with Hill coefficients of 1 at both potentials. Halothane induced a voltage-independent stimulation of gK+ primarily by decreasing the leak channel closed-state dwell time.  相似文献   

15.
Summary Patch-clamp techniques have been applied to characterize the channels in the basolateral membrane of resting (cimetidine-treated, nonacid secreting) oxyntic cells isolated from the gastric mucosa ofNecturus maculosa. In cell-attached patches with pipette solution containing 100mm KCl, four major classes of K+ channels can be distinguished on the basis of their kinetic behavior and conductance: (1) 40% of the patches contained either voltage-independent (a) or hyperpolarization-activated (b), inward-rectifying channels with short mean open times (16 msec fora, and 8 msec forb). Some channels showed subconductance levels. The maximal inward conductanceg max was 31±5 pS (n=13) and the reversal potentialE rev was atV p=–34±6 mV (n=9). (2) 10% of the patches contained depolarization-activated and inward-rectifying channels withg max=40 ±18 pS (n=3) andE rev was atV p=–31±5 mV (n=3). With hyperpolarization, the channels open in bursts with rapid flickerings within bursts. Addition of carbachol (1mm) to the bath solution in cell-attached patches increased the open probabilityP o of these channels. (3) 10% of the patches contained voltage-independent inward-rectifying channels withg max=21±3 pS (n=4) andE rev was atV p=–24±9 mV (n=4). These channels exhibited very high open probability (P o=0.9) and long mean open time (1.6 sec) at the resting potential. (4) 20% of the patches contained voltage-independent channels with limiting inward conductance of 26±2 pS (n=3) andE rev atV p=–33±3 mV (n=3). The channels opened in bursts consisting of sequential activation of multiple channels with very brief mean open times (10 msec). In addition, channels with conductances less than 6 pS were observed in 20% of the patches. In all nine experiments with K+ in the pipette solution replaced by Na+, unitary currents were outward, and inward currents were observed only for large hyperpolarizing potentials. This indicates that the channels are more selective for K+ over Na+ and Cl. A variety of K+ channels contributes to the basolateral K+ conductance of resting oxyntic cells.  相似文献   

16.
Summary Voltage-clamped steps in the electric potential difference (PD) across the membrane in cells of the green alga,Chara inflata, cause voltage- and time-dependent current flows, interpreted to arise from opening and closing of various types of ion channel in the membrane. With cells in the light, these channels are normally closed, and the resting PD is probably determined by the operation of an H+ efflux pump. Positive steps in PD from the resting level often caused the opening of K+ channels with sigmoid kinetics. The channels began to show opening when the PD–120 mV for an external concentration of K+ of 1.0mm. Return of the PD to the resting level caused closing of the channels with complex kinetics. Various treatments of the cell could cause these K+ channels to open, and remain open continuously, with the PD then lying closer to the Nernst PD for K+. The K+ channels have been identified by the blocking effects of TEA+. Another group of channels, probably Cl and Ca2+ associated with the action potential open when the PD is stepped to values less negative than –50 mV. Negative steps from the resting PD cause the slow opening, with a time course of seconds, of yet another type of channel, probably Cl.  相似文献   

17.
Summary The induction of channels across planar lipid bilayers by purified, recombinant pneumolysin (a hemolytic protein from Streptococcus pneumoniae) has been studied by measuring increases in electrical conductivity. Pneumolysin-induced channels exhibit a wide range of single channel conductances (<50 pS to >1 nS at 0.1 m KCl). Channels can be categorized on the basis of their K+:C selectivity: the smallest channels are strongly cation selective, with t+ (the cation transference number) approaching 1.0; the largest channels are unselective (t+ 0.5). Channels tend to remain open at all voltages (–150 to 150 mV); only the smallest channels exhibit any rectification.In the presence of divalent cations (1–5 mm Zn2+; 10–20 mm Ca2+), small (<50 pS) and medium-sized (50 pS to 1 nS) channels are closed in a voltage-dependent manner (more closure at higher voltages); at 0 voltage channels reopen. Overall selectivity is reduced by divalent cations, compatible with small, selective channels being closed preferentially to large, nonselective ones.It is concluded that a single molecular species (pneumolysin) induces multiple-sized channels that can be categorized by cation: anion selectivity and by their sensitivity to closure by divalent cations.We are grateful to Dr. G. J. Boulnois and T. J. Mitchell forfruitful discussion and supplies of pneumolysin, and to G. M. Alder for technical assistance. YEK is grateful to Dr. A. A. Lev for leave of absence and to the USSR Academy of Sciences and the Global Network for Molecular and Cell Biology (UNESCO) for support of travel and accommodation, respectively. The work was supported by the Cell Surface Research Fund.  相似文献   

18.
Patch clamp recordings from neonatal cardiac Na+ channels treated with N-bromoacetamide (NBA, 5–50 x 10-mol/l) showed modified Na+ channel activity. By chemical removal of inactivation, repetitive openings with an increased life time and burst-like activity occurred. NBA-modified Na+ channels differ in life time and may attain either a slightly (mean open time 3.1±0.2 ms) or a strongly (mean open time 15.2±1.4 ms) prolonged open state. This strongly suggests a heterogeneous population of NBA-modified Na+ channels in newborn rat cardiocytes.  相似文献   

19.
Ion channels are pharmocologic receptors and as such exhibit stereoselective interactions with drugs. Ion channels are conformationally mobile transmembrane proteins existing in a number of open and closed states. Drug interactions with these different states may differ quantitatively and qualitatively. Stereoselectivity may not be a constant factor and may change according to channel state as determined by stimulus mode or experimental conditions. Selected examples are cited for Na+ and Ca2+ channels. © 1996 Wiley-Liss, Inc.  相似文献   

20.
To study the effect of conserved cysteins on biochemical properties of a previously cloned metagenomic polygalacturonase (PecJKR01), single point variants A42C, M283C, and double variants M283C + F24C, M283C + A42C were constructed. Mutations resulted in shifting the pH toward lower range and enhanced thermostability. The mutants were optimally active at pH 5.0 as compared to pH 7.0 for wild type. Point variants demonstrated slightly higher enzyme activity at 60o C than that of the wild type. In addition, the A42C/M283C + A42C variants displayed nearly 28–40% enhanced thermostability, while M283C + 24C was least thermostable among all variants/ wild type. Cys (pKa 8.18) possibly interfered in the ionization state resulting in change in pH optima of variants. Structure function analysis suggested that the increased activity in A42C could be due to van der Waals interactions in S···Ar with Phe29 and formation of an additional hydrogen bond between Cys42-S....HN-Ala31. Higher thermostability and decreased enzymatic activity of M283C might be attributed to the incorporation of additional disulfide linkage between Cys283 S=S Cys255 and decreased cavity size. Overall cysteine at position 42 was most promising in shifting the optimum pH toward lower range as well as for thermostability of enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号