首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phasianids are considered to be sedentary birds with limited dispersal so that populations may be expected to show genetic isolation by distance. To test this, we examined genetic variability in 618 greywing francolins (Francolinus africanus) at 24 localities over a 1,500 km2 area. We subdivided the samples to measure genetic population structure among localities separated by 6–60 km, and among coveys separated by 0.1–6 km. Thirteen of 30 (43%) allozyme loci were polymorphic, and heterozygosity ranged from 5.3 to 8.5% over 24 localities and averaged 7.0%, a value much larger than that found for other phasianids. Significant allele-frequency heterogeneity was detected among localities and among coveys at several localities for several loci. Mantel's test, however, showed that there was no correlation between geographical distance and the allele-frequency difference between localities for all but one allele. Although spatial autocorrelation was detected with Moran's I and Geary's c for two alleles, the geographical patterns of I in correlograms of 18 independent alleles showed a “crazy-quilt” pattern of allele-frequency patches. This shows that the isolation-by-distance model of subpopulation structure is inappropriate for these birds. Individuals, therefore, appear to disperse far beyond neighboring populations. “Private-allele” and FST estimates of migration under the island model were 8–9 individuals between localities of each generation. Allele-frequency heterogeneity, large amounts of gene flow, and the general lack of spatial autocorrelation imply that the small, socially-structured populations of greywing are subject to high rates of turnover, founder effects, and random drift.  相似文献   

2.
Understanding patterns of diversity can be furthered by analysis of the dynamics of colonization, speciation, and extinction on islands using historical information provided by molecular phylogeography. The land birds of the Lesser Antilles are one of the most thoroughly described regional faunas in this context. In an analysis of colonization times, Ricklefs and Bermingham (2001) found that the cumulative distribution of lineages with respect to increasing time since colonization exhibits a striking change in slope at a genetic distance of about 2% mitochondrial DNA sequence divergence (about one million years). They further showed how this heterogeneity could be explained by either an abrupt increase in colonization rates or a mass extinction event. Cherry et al. (2002), referring to a model developed by Johnson et al. (2000), argued instead that the pattern resulted from a speciation threshold for reproductive isolation of island populations from their continental source populations. Prior to this threshold, genetic divergence is slowed by migration from the source, and species of varying age accumulate at a low genetic distance. After the threshold is reached, source and island populations diverge more rapidly, creating heterogeneity in the distribution of apparent ages of island taxa. We simulated of Johnson et al.'s speciation-threshold model, incorporating genetic divergence at rate k and fixation at rate M of genes that have migrated between the source and the island population. Fixation resets the divergence clock to zero. The speciation-threshold model fits the distribution of divergence times of Lesser Antillean birds well with biologically plausible parameter estimates. Application of the model to the Hawaiian avifauna, which does not exhibit marked heterogeneity of genetic divergence, and the West Indian herpetofauna, which does, required unreasonably high migration-fixation rates, several orders of magnitude greater than the colonization rate. However, the plausibility of the speciation-divergence model for Lesser Antillean birds emphasizes the importance of further investigation of historical biogeography on a regional scale for whole biotas, as well as the migration of genes between populations on long time scales and the achievement of reproductive isolation.  相似文献   

3.
An interesting aspect of the island of Sardinia (Italy) is the wide range of genetic variability within the island itself. The variability is widened by the presence of some populations of different ethnic origin who speak a language other than Sardinian. This work deals with the study of the genetic structure of the Carloforte population which inhabits the tiny island of S. Pietro 4 km off the southwest coast of Sardinia. S. Pietro was first populated in 1738 by emigrants coming from the island of Tabarka (Tunisia) who spoke an archaic form of the Ligurian dialect. Data on genetic polymorphisms in the Carloforte population are presented and discussed in relation to some Sardinian and Italian populations. Data on demographic and matrimonial structure are also presented. The genetic analyses show the Carloforte population as being clearly separated from both Sardinians and continental Italians. The isolation of Carloforte, highlighted by language diversity, endogamy, and consanguinity levels and marriage area, supports the idea of genetic diversity linked to cultural peculiarity. © 1996 Wiley-Liss, Inc.  相似文献   

4.
We generated numerous simulated gene-frequency surfaces subjected to 200 generations of isolation by distance with, in some cases, added migration or selection. From these surfaces we assembled six data sets comprising from 12 to 15 independent allele-frequency surfaces, to simulate biologically plausible population samples. The purpose of the study was to investigate whether spatial autocorrelation analysis will correctly infer the microevolutionary processes involved in each data set. The correspondence between the simulated processes and the inferences made concerning them is close for five of the six data sets. Errors in inference occurred when the effect of migration was weak, due to low gene frequency differential or low migration strength; when selection was weak and against a background with a complex pattern; and when a random process—isolation by distance—was the only one acting. Spatial correlograms proved more sensitive to detecting trends than inspection of gene-frequency surfaces by the human eye. Joint interpretation of the correlograms and their clusters proved most reliable in leading to the correct inference. The inspection and clustering of surfaces were useful for determining directional components. Because this method relies on common patterns across loci, as many gene frequencies as feasible should be used. We recommend spatial autocorrelation analysis for the detection of microevolutionary processes in natural populations.  相似文献   

5.
Patterns of parapatric speciation   总被引:5,自引:0,他引:5  
Abstract. Geographic variation may ultimately lead to the splitting of a subdivided population into reproductively isolated units in spite of migration. Here, we consider how the waiting time until the first split and its location depend on different evolutionary factors including mutation, migration, random genetic drift, genetic architecture, and the geometric structure of the habitat. We perform large-scale, individual-based simulations using a simple model of reproductive isolation based on a classical view that reproductive isolation evolves as a by-product of genetic divergence. We show that rapid parapatric speciation on the time scale of a few hundred to a few thousand generations is plausible even when neighboring subpopulations exchange several individuals each generation. Divergent selection for local adaptation is not required for rapid speciation. Our results substantiates the claims that species with smaller range sizes (which are characterized by smaller local densities and reduced dispersal ability) should have higher speciation rates. If mutation rate is small, local abundances are low, or substantial genetic changes are required for reproductive isolation, then central populations should be the place where most splits take place. With high mutation rates, high local densities, or with moderate genetic changes sufficient for reproductive isolation, speciation events are expected to involve mainly peripheral populations.  相似文献   

6.
Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species’ lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population’s demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations.  相似文献   

7.
We studied the development of genetic differentiation and postzygotic isolation in experimental metapopulations of the two-spotted spider mite, Tetranychus urticae Koch. A genetically diverse starter population was made by allowing six inbred sublines to interbreed. Then three migration patterns were tested: no migration, or one or three immigrants per subpopulation per generation. Variations in four traits were investigated: allozymes, acaricide resistance, diapause, and hatchability. In the allozymes, acaricide resistance, and diapause, genetic variation among subpopulations became high in metapopulations with no migration, but not in the others, which showed that one immigrant is enough to prevent genetic differentiation. Hatchability, which was decreased by interbreeding among the six sublines, gradually recovered in succeeding generations. In metapopulations with no migration, hatchability was reduced again after in-migration at the 15th generation. Different karyotypes or coadapted gene complexes can survive in different subpopulations by genetic drift, and both Wolbachia-infected and -noninfected subpopulations may be selected, which would lead to postzygotic isolation between isolated subpopulations. Our results indicate that sampling effects such as genetic drift or stochastic loss of Wolbachia produce postzygotic isolation in laboratory populations of spider mite.  相似文献   

8.
Many lichen species produce both sexual and asexual propagules, but, aside from being minute, these diaspores lack special adaptations for long-distance dispersal. So far, molecular studies have not directly addressed isolation and genetic differentiation of lichen populations, both being affected by gene flow, at a regional scale. We used six mycobiont-specific microsatellite loci to investigate the population genetic structure of the epiphytic lichen Lobaria pulmonaria in two regions that strongly differed with respect to anthropogenic impact. In British Columbia, L. pulmonaria grows in continuous old-growth forests, while its populations in the old cultural landscape of Switzerland are comparably small and fragmented. Populations from both British Columbia and Switzerland were genetically diverse at the loci. Geographically restricted alleles, low historical gene flow, and analyses of genetic distance (upgma tree) and of differentiation (amova) indicated that populations from Vancouver Island and from the Canadian mainland were separated from each other, except for one, geographically intermediate population. This differentiation was attributed to different glacial and postglacial histories of coastal and inland populations in British Columbia. In contrast to expectations, the three investigated Swiss populations were genetically neither isolated nor differentiated from each other despite the long-lasting negative human impact on the lichen's range size in Central Europe. We propose that detailed studies integrating local landscape and regional scales are now needed to understand the processes of dispersal and gene flow in lichens.  相似文献   

9.
Perrin C  Wing SR  Roy MS 《Molecular ecology》2004,13(8):2183-2195
New Zealand's 14 deep-water fiords possess persistent salinity stratification and mean estuarine circulation that may serve to isolate populations of marine organisms that have a dispersal larval phase. In order to investigate this idea, we analysed the population structure of the sea star Coscinasterias muricata using a mitochondrial DNA marker. Genetic differentiation among populations of C. muricata was analysed using 366 base pairs of mtDNA D-loop. We compared populations from the fiords with several others sampled from around New Zealand. At a macro-geographical scale (> 1000 km), restricted gene flow between the North and South Islands was observed. At a meso-geographical scale (10-200 km), significant population structure was found among fiords and between fiords and open coast. The pattern of population genetic structure among the fiords suggests a secondary contact between a northern population and a southern one, separated by a contact or mixing zone. These populations may have diverged by the effects of random genetic drift and population isolation as a consequence of the influence of estuarine circulation on dispersal. In northern Fiordland, genetic structure approximated an isolation by distance model. However, the pattern in genetic differences suggests that distance alone cannot explain the most divergent populations and that fiord hydrography may increase the effect of genetic drift within populations in the fiords. Finally, our study indicates that populations within the fiords underwent recent rapid expansion, followed most probably by genetic drift due to a lack of gene flow among the fiords.  相似文献   

10.
Analysis of population genetic relationships reveals the signatures of current processes such as spawning behaviour and migration, as well as those of historical events including vicariance and climate change. This study examines these signatures through testing broad‐ to fine‐scale genetic patterns among smallmouth bass Micropterus dolomieu spawning populations across their native Great Lakes range and outgroup areas, with fine‐scale concentration in Lake Erie. Our primary hypotheses include whether genetic patterns result from behavioural and/or geographical isolation, specifically: (i) Are spawning groups in interconnected waterways genetically separable? (ii) What is the degree of isolation across and among lakes, basins, and tributaries? (iii) Do genetic divergences correspond to geographical distances? and (iv) Are historical colonization patterns from glacial refugia retained? Variation at eight nuclear microsatellite DNA loci are analysed for 666 smallmouth bass from 28 locations, including 425 individuals in Lake Erie; as well as Lakes Superior, Huron, and Ontario, and outgroups from the Mississippi, Ohio, St. Lawrence, and Hudson River drainages. Results reveal marked genetic differences among lake and river populations, as well as surprisingly high divergences among closely spaced riverine sites. Results do not fit an isolation‐by‐geographical‐distance prediction for fine‐scale genetic patterns, but show weak correspondence across large geographical scales. Genetic relationships thus are consistent with hypotheses regarding divergent origins through vicariance in glacial refugia, followed by colonization pathways establishing modern‐day Great Lakes populations, and maintenance through behavioural site fidelity. Conservation management practices thus should preserve genetic identity and unique characters among smallmouth bass populations.  相似文献   

11.
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from a biogeographic boundary, geographical distance and the distribution of suitable habitat were investigated in Axoclinus nigricaudus, a small subtidal rock-reef fish, throughout its range in the Gulf of California. A 408-bp fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between 28 of 36 possible combinations of population pairs. Phylogenetic analyses, hierarchical analyses of variance and a modified Mantel test substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics, including temperature and salinity, but does not coincide with known oceanographic circulation patterns or any known historic barriers. There was an overall relationship of increasing genetic distance with increasing geographical distance between population pairs, in a manner consistent with isolation-by-distance. A significant habitat-by-geographical-distance interaction term indicated that, for a given geographical distance, populations separated by discontinuous habitat (sand) are more distinct genetically than are populations separated by continuous habitat (rock). In addition, populations separated by deep open waters were more genetically distinct than populations separated by continuous habitat (rock). These results indicate that levels of genetic differentiation among populations of A. nigricaudus cannot be explained by a single factor, but are due to the combined influences of biogeography, geographical distance and availability of suitable habitat.  相似文献   

12.
Abstract. An island model of migration is used to study the effects of subdivision within populations and species on sample genealogies and on between-population or between-species measures of genetic variation. The model assumes that the number of demes within each population or species is large. When populations (or species), connected either by gene flow or historical association, are themselves subdivided into demes, changes in the migration rate among demes alter both the structure of genealogies and the time scale of the coalescent process. The time scale of the coalescent is related to the effective size of the population, which depends on the migration rate among demes. When the migration rate among demes within populations is low, isolation (or speciation) events seem more recent and migration rates among populations seem higher because the effective size of each population is increased. This affects the probability of reciprocal monophyly of two samples, the chance that a gene tree of a sample matches the species tree, and relative likelihoods of different types of polymorphic sites. It can also have a profound effect on the estimation of divergence times.  相似文献   

13.
I consider a simple model for the evolution of a quantitative character is structured populations when an offspring's phenotype is determined partly by his or her genetic constitution and partly by cultural transmission of the parental phenotype. Analysis of the model indicates that when individual and group selection are in the same direction, phenotypic evolution always proceeds faster under gene-culture vs. purely genetic transmission. When individual and group selection are countervailing, altruistic characters evolve faster under gene-culture transmission when individual selection is weak and migration among groups is limited, with increased individual selection and migration tending to decrease the advantage of gene-culture transmission over purely genetic transmission. Given the prevalence of cultural transmission in higher species, these results suggest that contrary to what is often assumed, group selection may indeed by a potent evolutionary force in the evolution of altruistic characters.  相似文献   

14.
Genetic characterization of one European and three aboriginal populations from northern Ontario was undertaken to assess the utility of the D18S535 short tandem repeat locus (STR) as a genetic marker for forensic DNA typing in the region. The D18S535 locus was amplified using monoplex polymerase chain reaction (PCR), separated by denaturing polyacrylamide gel electrophoresis (PAGE), and visualized using the silver-stain detection method. The generated population data demonstrated that the D18S535 locus is highly polymorphic with a heterozygosity of > or = 0.75. The exact test showed violations of Hardy-Weinberg equilibrium in two of the aboriginal populations. Pairwise comparisons of allele-frequency distributions indicated that the four northern Ontario populations were significantly different from each other. This test also revealed that the northern Ontario populations differed significantly from ten European populations (from Germany, Spain, and Croatia) and one population from South America (from Argentina). Forensic parameters showed that the D18S535 locus is highly discriminating (power of discrimination > or = 0.85, chance of exclusion > or = 0.51); however, the lack of Hardy-Weinberg equilibrium in some of the populations must be taken into account in the application of these results to northern Ontario forensic casework.  相似文献   

15.
Mitochondrial DNA variability of West New Guinea populations.   总被引:3,自引:0,他引:3  
This paper reports human mitochondrial DNA variability in West New Guinea (the least known, western side of the island of New Guinea), not yet described from a molecular perspective. The study was carried out on 202 subjects from 12 ethnic groups, belonging to six different Papuan language families, representative of both mountain and coastal plain areas. Mitochondrial DNA hypervariable region 1 (HVS 1) and the presence of the 9-bp deletion (intergenic region COII-tRNA(Lys)) were investigated. HVS 1 sequencing identified 73 polymorphic sites defining 89 haplotypes; the 9-bp deletion, which is considered a marker of Austronesian migration in the Pacific, was found to be absent in the whole West New Guinea study sample. Statistical analysis applied to the resulting haplotypes reveal high heterogeneity and an intersecting distribution of genetic variability in these populations, despite their cultural and geographic diversity. The results of subsequent phylogenetic approaches subdivide mtDNA diversity in West New Guinea into three main clusters (groups I-III), defined by sets of polymorphisms which are also shared by some individuals from Papua New Guinea. Comparisons with worldwide HVS 1 sequences stored in the MitBASE database show the absence of these patterns outside Oceania and a few Indonesian subjects, who also lack the 9-bp deletion. This finding, which is consistent with the effects of genetic drift and prolonged isolation of West New Guinea populations, lead us to regard these patterns as New Guinea population markers, which may harbor the genetic memory of the earliest human migrations to the island.  相似文献   

16.
Stipa capillata L. (Poaceae) is a rare grassland species in Central Europe that is thought to have once been widespread in post‐glacial times. Such relict species are expected to show low genetic diversity within populations and high genetic differentiation between populations due to bottlenecks, long‐term isolation and ongoing habitat fragmentation. These patterns should be particularly pronounced in selfing species. We analysed patterns of random amplified polymorphic DNA (RAPD) variation in the facultatively cleistogamous S. capillata to examine whether genetic diversity is associated with population size, and to draw initial conclusions on the migration history of this species in Central Europe. We analysed 31 S. capillata populations distributed in northeastern, central and western Germany, Switzerland and Slovakia. Estimates of genetic diversity at the population level were low and not related to population size. Among all populations, extraordinarily high levels of genetic differentiation (amova : φST = 0.86; Bayesian analysis: θB = 0.758) and isolation‐by‐distance were detected. Hierarchical amova indicated that most of the variability was partitioned among geographic regions (59%), or among populations between regions when the genetically distinct Slovakian populations were excluded. These findings are supported by results of a multivariate ordination analysis. We also found two different groups in an UPGMA cluster analysis: one that contained the populations from Slovakia, and the other that combined the populations from Germany and Switzerland. Our findings imply that Scapillata is indeed a relict species that experienced strong bottlenecks in Central Europe, enhanced by isolation and selfing. Most likely, populations in Slovakia were not the main genetic source for the post‐glacial colonization of Central Europe.  相似文献   

17.
Understanding how the scale of pollen transfer determines the outcome of matings is important evolutionarily and a key issue in restoration ecology. We tested the effects of pollen transfer distance for the self‐incompatible shrub Grevillea sphacelata using (1) open pollination and transfer among (2) near neighbours, (3) neighbouring subpopulations and (4) populations separated by c. 4 km. We used AFLP markers to test for evidence of genetic differentiation within and among populations. Patterns of seed initiation suggest that open pollinated flowers were pollen limited, although in one subpopulation open seed set was greater than that achieved with pollen from near neighbours or other subpopulations. We detected no other effects of pollen source on seed initiation or seed and seedling development. In contrast, our genetic survey revealed significant spatial autocorrelation to 5 m, moderate differentiation of populations separated by up to 4 km and significant isolation by distance > 16 km. Our data suggest that, although dispersal of pollen may typically be localized, gene flow prevents localized adaptation or co‐adaptation and we detected no effects of inbreeding depression. In a restoration context, our results imply that movement of seed between populations separated by 4 km will not have detrimental consequences, despite significant differentiation at neutral genetic markers, and may be beneficial in maintaining genetic diversity and evolutionary potential. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 290–302.  相似文献   

18.
Cultural hitchhiking is the process by which cultural selection reduces the diversity of genes that are being transmitted in parallel to selective cultural traits. I use simulation models to investigate cultural hitchhiking in geographically unstructured populations of culturally homogeneous tribes. Substantial reduction of genetic diversity required: a reasonably low mutation rate; that tribes split fairly frequently when they constitute a substantial part of the population; a fairly low migration rate (<∼10 migrants per tribe per generation); only a low rate of cultural evolution (mean culturally determined fitness change >∼0.005%/ generation); and that cultural assimilation from other tribes change the fitness of a tribe less than cultural innovation within it. Cultural hitchhiking tends to increase mean tribe size. Measures of genetic and cultural variation among tribes poorly indicate past cultural hitchhiking. Demographic effects, in which tribal fitness varies but is not heritable, can also reduce a population's genetic diversity if the fitness varies very considerably, or tribal extirpation is added. In such cases populations frequently become extinct. Four species of matrilineal whales have remarkably low mitochondrial DNA diversity. Knowledge of the population and social structure of these species is consistent with the conditions for cultural hitchhiking. However, there remain important information gaps.  相似文献   

19.
The dispersal capabilities of intertidal organisms may represent a key factor to their survival in the face of global warming, as species that cannot adapt to the various effects of climate change will have to migrate to track suitable habitat. Although species with pelagic larval phases might be expected to have a greater capacity for dispersal than those with benthic larvae, interspecies comparisons have shown that this is not always the case. Consequently, population genetic approaches are being increasingly used to gain insights into dispersal through studying patterns of gene flow. In the present study, we used nuclear single‐nucleotide polymorphisms (SNPs) and mitochondrial DNA (mtDNA) sequencing to elucidate fine‐scale patterns of genetic variation between populations of the Black Katy Chiton, Katharina tunicata, separated by 15–150 km in south‐west Vancouver Island. Both the nuclear and mitochondrial data sets revealed no genetic differentiation between the populations studied, and an isolation‐with‐migration analysis indicated extensive local‐scale gene flow, suggesting an absence of barriers to dispersal. Population demographic analysis also revealed long‐term population stability through previous periods of climate change associated with the Pleistocene glaciations. Together, the findings of the present study suggest that this high potential for dispersal may allow K. tunicata to respond to current global warming by tracking suitable habitat, consistent with its long‐term demographic stability through previous changes in the Earth's climate. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 589–597.  相似文献   

20.
为研究广西仫佬、毛南、苗和瑶族的15个短串联重复序列(STR)基因座的遗传多态性,探讨这4个民族群体的遗传差异和进化关系。通过PCR-STR及测序仪,检测了广西4个民族766例无关个体的15个STR位点基因频率的分布并比较各民族间的差异,计算遗传学参数、遗传距离和构建系统进化树。结果显示:仫佬、毛南、苗和瑶族的15个STR位点分别共检出135,134,148,145种等位基因和424,432,445,436种基因型;各民族的平均Ho〉0.7,累积DP,EPP和PIC均在0.99999以上;毛南族和苗族,瑶族和其他民族间在多数位点的基因频率分布上存在显著差异,而仫佬族和毛南族或苗族间在多数位点上不存在差异;4个民族在进化树上被分为两组,仫佬族和毛南族聚成一组,苗族和瑶族聚成另一组。说明广西仫佬、毛南、苗和瑶族的15个STR基因座具有高度的遗传多态性,实用价值较高,是一组可用于人类群体遗传学、法医学个体识别和亲子鉴定等研究的有力工具;4个民族STR的遗传差异性和遗传关系与他们的语言文化和民族历史基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号