首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated DNAs from the constitutive heterochromatin of human chromosomes 1 and 18 were used as probes in nonradioactive in situ hybridization experiments to define specific numerical and structural chromosome aberrations in three human glioma cell lines and one neuroblastoma cell line. The number of spots detected in interphase nuclei of these tumor cell lines and in normal diploid nuclei correlated well with metaphase counts of chromosomes specifically labeled by in situ hybridization. Rapid and reliable assessments of aneuploid chromosome numbers in tumor lines in double hybridization experiments were achieved, and rare cells with bizarre phenotype and chromosome constitution could be evaluated in a given tumor cell population. Even with suboptimal or rare chromosome spreads specific chromosome aberrations were delineated. As more extensive probe sets become available this approach will become increasingly powerful for uncovering various genetic alterations and their progression in tumor cells.  相似文献   

2.
Fluorescence in situ hybridization (FISH) with chromosome-specific probes has been applied to detection of numerical aberrations involving chromosomes 13, 18, and 21 in metaphase and interphase amniocytes. High-complexity, composite probes for chromosomes 13, 18, and 21 were used as hybridization probes for this study. These probes were constructed as chromosome-specific libraries in Bluescribe plasmids and are designated pBS-13, pBS-18, and pBS-21. Elements of these probes bind at numerous sites along the target chromosome and, when detected fluorescently, stain essentially the entire long arm of the target chromosome. The target chromosome number (i.e., the number of chromosomes of the type for which the probe was specific) was correctly determined in 20 of 20 samples in which metaphase spreads were analyzed and in 43 of 43 samples in which interphase nuclei were analyzed; all of these studies were conducted in blind fashion. These results suggest the utility of FISH with composite probes for rapid detection of numerical aberrations in metaphase and interphase amniotic cells.  相似文献   

3.
Summary Conventional and molecular cytogenetic analyses of three murine cancer cell lines that had been induced in male athymic mice by the injection of three different human prostate cancer cell lines revealed selective amplification of the Y chromosome. In particular, analysis of metaphase and interphase nuclei by fluorescence in situ hybridization (FISH) with the mouse Y chromosome-specific DNA painting probe revealed the presence of various numbers of Y chromosomes, ranging from one to eight, with a large majority of nuclei showing two copies (46.5–60.1%). In Interphase nuclei, the Y chromosomes showed distinct morphology, allowing identification irrespective of whether the preparations were treated for 15 min or for 5 h with Colcemid, a chemical known to cause chromosome condensation. However, FISH performed on human lymphocyte cultures with chromosome-specific DNA painting probes other than the Y chromosome did not reveal condensed chromosome morphology in interphase nuclei even after 12 h of Colcemid treatment. Our FISH results indicate that (1) the Y chromosome is selectively amplified in all three cell lines; (2) the mouse Y chromosome number is comparable in both interphase and metaphase cells; (3) the Y chromosome number varies between one and eight, with a large majority of cells showing two or three copies in most interphase nuclei; (4) the condensation of the Y chromosome is not affected by the duration of Colcemid treatment but by its inherent DNA constitution; and (5) the number of copies of the Y chromosome is increased and retained not only in human prostate tumor cell lines but also in murine tumors induced by these prostate tumor cell lines.  相似文献   

4.
This report describes the localization of specific nucleic acid sequences in interphase nuclei and metaphase chromosomes by a new hybridocytochemical method based on the use of mercurated nucleic acid probes. After the hybridization a sulfhydryl-hapten compound is reacted with the hybrids formed. A number of such ligands were synthesized and tested. A fluorescyl ligand could be used for the direct visualization of highly repetitive sequences. For indirect immunocytochemical visualization trinitrophenyl ligands were found to be more sensitive than biotinyl analogues. These ligands were applied for the detection of target sequences in metaphase chromosomes and interphase nuclei of somatic cell hybrids, human lymphoid cell lines and blood cell cultures. The sequences were in the range of high to low copy numbers. The lower limit of sensitivity is indicated by the visualization of two human unique DNA fragments (40 and 15.6 kb) in human metaphases. The method is rapid, gives consistent results and can be used for both RNA and DNA probes. Other potentials of the new principle are discussed.  相似文献   

5.
Summary Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA.  相似文献   

6.
Double in situ hybridization with mercurated and biotinylated chromosome specific DNA probes in combination with digital image analysis provides a new approach to compare the distribution of homologous and nonhomologous chromosome targets within individual interphase nuclei. Here we have used two DNA probes representing tandemly repeated sequences specific for the constitutive heterochromatin of the human chromosomes 1 and 15, respectively, and studied the relative arrangements of these chromosome targets in interphase nuclei of human lymphocytes, amniotic fluid cells, and fibroblasts, cultivated in vitro. We have developed a 2D-image analysis approach which allows the rapid evaluation of large numbers of interphase nuclei. Models to test for a random versus nonrandom distribution of chromosome segments are discussed taking into account the three-dimensional origin of the evaluated 2D-distribution. In all three human diploid cell types the measurements of target-target and target-center distances in the 2D-nuclear image revealed that the labeled segments of the two chromosomes 15 were distributed both significantly closer to each other and closer to the center of the nuclear image than the labeled chromosome 1 segments. This result can be explained by the association of nucleolus organizer regions on the short arm of chromosome 15 with nucleoli located more centrally in these nuclei and does not provide evidence for a homologous association per se. In contrast, evaluation of the interphase positioning of the two chromosome 1 segments fits the random expectation in amniotic fluid and fibroblast cells, while in experiments using lymphocytes a slight excess of larger distances between these homologous targets was occasionally observed. 2D-distances between the labeled chromosome 1 and 15 segments showed a large variability in their relative positioning. In conclusion our data do not support the idea of a strict and permanent association of these homologous and nonhomologous targets in the cell types studied so far.  相似文献   

7.
A degenerate alpha satellite DNA probe specific for a repeated sequence on human chromosomes 13 and 21 was synthesized using the polymerase chain reaction (PCR). Fluorescence in situ hybridization (FISH) with this probe to normal metaphase spreads revealed strong probe binding to the centromeric regions of human chromosomes 13 and 21 with negligible cross-hybridization with other chromosomes. FISH to normal interphase cell nuclei showed four distinct domains of probe binding. However, hybridization with probe to interphase and metaphase preparations from one apparently normal human male resulted in only three major binding domains. Metaphase chromosome analysis revealed a centromeric deletion on one chromosome 21 that caused greatly reduced probe binding. The result suggest caution in the interpretation of interphase ploidy studies performed with chromosome-specific alphoid DNA probes.  相似文献   

8.
Two recombinant DNA clones that are localized to single human chromosomes were isolated from a human repetitive DNA library. Clone pHuR 98, a variant satellite 3 sequence, specifically hybridizes to chromosome position 9qh. Clone pHuR 195, a variant satellite 2 sequence, specifically hybridizes to chromosome position 16qh. These locations were determined by fluorescent in situ hybridization to metaphase chromosomes, and confirmed by DNA hybridizations to human chromosomes sorted by flow cytometry. Pulsed field gel electrophoresis analysis indicated that both sequences exist in the genome as large DNA blocks. In situ hybridization to intact interphase nuclei showed a well-defined, localized organization for both DNA sequences. The ability to tag specific human autosomal chromosomes, both at metaphase and in interphase nuclei, allows novel molecular cytogenetic analyses in numerous basic research and clinical studies.  相似文献   

9.
The stability of chromosomes carrying amplified CAD (carbamyl phosphate synthetase-aspartate transcarbamylase-dihydroorotase) or DHFR (dihydrofolate reductase) genes was studied in V79 Chinese hamster cell derivatives resistant to PALA (N-phosphonacetyl-L-aspartate) and MTX (methotrexate), respectively. Cells were maintained in the presence of the selective drugs during the study. In both metaphase chromosomes and interphase nuclei, amplified regions were localized by in situ hybridization. In MTX-resistant cells, the amplification-bearing chromosome moved sluggishly at anaphase and gave rise to bud-shaped formations in interphase nuclei. It is suggested that these buds could eventually separate as micronuclei. In both MTX- and PALA-resistant cells, amplified DNA was observed in micronuclei in interphase and in displaced chromosomes in metaphase. Finally, amplification-bearing dicentric chromosomes were found in both drug-resistant cell lines. Cumulatively, these observations indicate that the presence of the amplified region in a chromosome renders it unstable: chromosomes bearing an amplified region tended to be excluded from cells, and rearrangements were more frequent than in normal chromosomes.  相似文献   

10.
The ammoniacal silver reaction for histones was applied to Trillium kamtschaticum chromosomes. In the brown-stained metaphase chromosome complement, the specific regions of the specific chromosome pairs, which were previously registered as Giemsa-positive and non-heterochromatic regions, were differentiated as prominently black segments. In interphase nucleus these black segments formed the black-stained chromocenters, distinct from other chromocenters which were stained brown.  相似文献   

11.
Summary DNA libraries from sorted human gonosomes were used selectively to stain the X and Y chromosomes in normal and aberrant cultured human cells by chromosomal in situ suppression (CISS-) hybridization. The entire X chromosome was stained in metaphase spreads. Interphase chromosome domains of both the active and inactive X were clearly delineated. CISS-hybridization of the Y chromosome resulted in the specific decoration of the euchromatic part (Ypter-q11), whereas the heterochromatic part (Yq12) remained unlabeled. The stained part of the Y chromosome formed a compact domain in interphase nuclei. This approach was applied to amniotic fluid cells containing a ring chromosome of unknown origin (47,XY; +r). The ring chromosome was not stained by library probes from the gonosomes, thereby suggesting its autosomal origin. The sensitivity of CISS-hybridization was demonstrated by the detection of small translocations and fragments in human lymphocyte metaphase spreads after irradiation with 60Co-gamma-rays. Lymphocyte cultures from two XX-males were investigated by CISS-hybridization with Y-library probes. In both cases, metaphase spreads demonstrated a translocation of Yp-material to the short arm of an X chromosome. The translocated Y-material could also be demonstrated directly in interphase nuclei. CISS-hybridization of autosomes 7 and 13 was used for prenatal diagnosis in a case with a known balanced translocation t(7;13) in the father. The same translocation was observed in amniotic fluid cells from the fetus. Specific staining of the chromosomes involved in such translocations will be particularly important, in the future, in cases that cannot be solved reliably by conventional chromosome banding alone.Dedicated to Professor Friedrich Vogel on the occasion of his 65th birthday  相似文献   

12.
The chromatin in interphase nuclei is much less condensed than are metaphase chromosomes, making the resolving power of fluorescence in situ hybridization (FISH) two orders of magnitude higher in interphase nuclei than on metaphase chromosomes. In mammalian species it has been demonstrated that within a certain range the interphase distance between two FISH sites can be used to estimate the linear DNA distance between the two probes. The intephase mapping strategy has never been applied in plant species, mainly because of the low sensitivity of the FISH technique on plant chromosomes. Using a CCD (charge-coupled device) camera system, we demonstrate that DNA probes in the 4 to 8 kb range can be detected on both metaphase and interphase chromosomes in maize. DNA probes pA1-Lc and pSh2.5·SstISalI, which contain the maize locia1 andsh2, respectively, and are separated by 140 kb, completely overlapped on metaphase chromosomes. However, when the two probes were mapped in interphase nuclei, the FISH signals were well separated from each other in 86% of the FISH sites analyzed. The average interphase distance between the two probes was 0.50 µm. This result suggests that the resolving power of interphase FISH mapping in plant species can be as little as 100 kb. We also mapped the interphase locations of another pair of probes, ksu3/4 and ksu16, which span theRp1 complex controlling rust resistance of maize. Probes ksu3/4 and ksu16 were mapped genetically approximately 4 cM apart and their FISH signals were also overlapped on metaphase chromosomes. These two probes were separated by an average of 2.32 µm in interphase nuclei. The possibility of estimating the linear DNA distance between ksu3/4 and ksu16 is discussed.  相似文献   

13.
The physical mapping of single locus sequences by tyramide-fluorescence in situ hybridization (Tyr-FISH) and the analysis of sequences obtained from microdissected chromosomes were assayed as potential tools for (1) determining homology and homoeology among chromosome regions of Avena species, and (2) establishing associations between linkage groups and specific chromosomes. Low copy number probes, derived from resistance gene analogues (RGAs) and 2.8-4.5 kb long, successfully produced hybridization signals on specific chromosomes. Four sets of homoeologous chromosome regions were identified in the hexaploids using 3 probes that produced 4 single locus markers in A. strigosa and 2 in A. eriantha. Laser capture microdissection of metaphase I cells of A. sativa monosomic lines allowed the isolation of critical univalents. Sequences derived from 2 RGAs were successfully amplified in DNA extracted from univalents. In one instance, it was possible to map a nucleotide polymorphism specific for 1 chromosome. An association was established between this chromosome and its linkage groups in 2 hexaploid genetic maps. The results indicate that Tyr-FISH is useful in the characterization of homoeologous chromosome segments in hexaploids, whereas chromosome microdissection, as employed in this work, needs to be improved before it can routinely be used with meiotic chromosomes.  相似文献   

14.
Priest  Jean H. 《Chromosoma》1968,24(4):438-455
The human C group chromosomes late to start replication in asynchronous and in FUdR synchronized cell lines are X chromosomes. These same chromosomes are also heterochromatic during interphase. During metaphase these allocyclic Xs cannot be identified simply by metaphase position or morphology and show a wide range of measurements for arm ratio, centromere index and total length. Replication starts in the short arm and extends over the entire chromosome during the 2nd and 3rd hr of S until by the 4th hr distinction from other C group chromosomes cannot be made by means of the labeling pattern. When the allocyclic X chromosomes start replication the pattern of H3TdR label over interphase sex chromatin and non-specific heterochromatin shifts from unlabeled to labeled in FUdR synchronized human cell lines. The overall time required for replication of the allocyclic X is less than that for the other chromosomes in both asynchronous and FUdR treated cells. A hypothesis is presented for a direct relation between the delay of onset of replication in heterochromatin and its degree of interphase condensation.The present study was supported by research grants: No. HD-00777 from the National Institutes of Health and No. E-487 from the American Cancer Society, Inc.  相似文献   

15.
Early diagnosis is very important in pre- and postnatal diagnosis of Down syndrome. This study examines the use of fluorescence in situ hybridization (FISH) to detect trisomy 21 in interphase nuclei and metaphase chromosome obtained from fifty-four Down syndrome patients with a regular type trisomy 21. Three of them showed six hybridization signals on both interphase nuclei and metaphase spreads instead of five signals corresponding to two chromosomes 13 and three chromosomes 21 although they were cytogenetically trisomy 21. Simultaneous application of probe combination revealed that one of the extra signals of chromosomes 13/21 a-satellite probe was located on chromosome 22 in two cases and one extra signal on chromosomes 15 in one case. In addition, another case showed four hybridization signals on both interphase nuclei and metaphase spreads instead of five signals, indicating deletion of the chromosome specific alpha-satellite DNA sequence of chromosome 13/21. These centromeric sequence changes may have pathological significance in the appearance of aneuploidy because they may be involved in the important centromere function.  相似文献   

16.
Summary A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells.  相似文献   

17.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

18.
Chromosomal in situ suppression (CISS)-hybridization of biotinylated phage DNA-library inserts from sorted human chromosomes was used to decorate chromosomes 1 and 7 specifically from pter to qter and to detect structural aberrations of these chromosomes in irradiated human peripheral lymphocytes. In addition, probe pUC1.77 was used to mark the 1q12 subregion in normal and aberrant chromosomes 1. Low LET radiation (60Co-gamma-rays; 1.17 and 1.33 MeV) of lymphocyte cultures was performed with various doses (D = 0, 2, 4, 8 Gy) 5 h after stimulation with phytohaemagglutinin. Irradiated cells were cultivated for an additional 67 h before Colcemid arrested metaphase spreads were obtained. Aberrations of the specifically stained chromosomes, such as deletions, dicentrics, and rings, were readily scored after in situ hybridization with either the 1q12 specific probe or DNA-library inserts. By the latter approach, translocations of the specifically stained chromosomes could also be reliably assessed. A linear increase of the percentage of specifically stained aberrant chromosomes was observed when plotted as a function of the square of the dose D. A particular advantage of this new approach is provided by the possibility to delineate numerical and structural chromosome aberrations directly in interphase nuclei. These results indicate that cytogenetic monitoring of ionizing radiation may be considerably facilitated by CISS-hybridization.  相似文献   

19.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

20.
Chinese hamster cells (M3-1 line) in S phase were laser-UV-microirradiated (lambda, 257 nm) at a small site of the nucleus. Cells were fixed either immediately thereafter or in subsequent stages of the cell cycle, including prophase and metaphase. The microirradiated chromatin was visualized by indirect immunofluorescence microscopy using antibodies specific for UV-irradiated DNA. During the whole post-incubation period (4-15 h) immunofluorescent labelling was restricted to a small part of the nucleus (means, 4.5% of the total nuclear area). In mitotic cells segments of a few chromosomes only were labelled. Following microirradiation of chromosome segments in anaphase, immunofluorescent labelling was observed over a small part of the resulting interphase nucleus. A territorial organization of interphase chromosomes, i.e. interphase chromosomes occupying distinct domains, has previously been demonstrated by our group for the nucleus of Chinese hamster cells in G1. Our present findings provide evidence that this organization pattern is maintained during the entire cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号