首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The correlation of dopamine (DA)-, noradrenaline (NA)- or serotonin (5HT)-containing neurons and thyrotropin releasing hormone (TRH)-containing neurons in the median eminence of the rat, as well as the coexistence of monoamines (MA) and TRH in the neurons, were examined by subjecting ultrathin sections to a technique that combines MA autoradiography and TRH immunocytochemistry. The distribution and localization of silver grains after 3H-MA injection were examined by application of circle analysis on the autoradiographs.TRH-like immunoreactive nerve terminals containing the immunoreactive dense granular vesicles were found to have an intimate contact with monoaminergic terminals labeled after 3H-DA, 3H-NA or 3H-5HT infusion in the vicinity of the primary portal capillaries in the median eminence. Synapses between TRH-like immunoreactive axons and MA axons labeled with silver grains, however, have not been observed to date. Findings suggesting the coexistence of TRH and MA in the same nerve terminals or the uptake of 3H-MA into TRH-like immunoreactive nerve terminals, where silver grains after 3H-MA injection were concurrently localized in TRH-like immunoreactive nerve terminals, were rarely observed in the median eminence. Percentages of the nerve terminals containing both immunoreactive granular vesicles and silver grains after 3H-MA injection to total nerve terminals labeled after 3H-MA infusion silver grains were equally very low in 3H-DA, 3H-NA or 3H-5HT, amounting to less than 6.1%.This work was supported in part by grant-in-aid for scientific research from the Japan Ministry of Education (No. 557018).  相似文献   

2.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

3.
Summary The ultrastructural effects of vinblastine on the arcuate neurons and median eminence were studied in the rat. The animals were stereotaxically injected with solutions of 1 mM and 5 mM vinblastine into the median eminence and killed 3, 8 and 21 days after injection. Eight days after injection of 1 mM vinblastine the neurons of the arcuate nucleus showed marked changes. The Golgi complex was more distinct and considerable increases in the populations of dense bodies, granulated vesicles and coated vesicles were observed. Changes in the axo-somatic synapses and degenerating fibers in the surrounding neuropil were also characteristic of the experimental animals. The outer zone of the median eminence showed numerous degenerated nerve fibers and fibers engulfed by glial cell processes. Eight days after injection of 5 mM vinblastine arcuate neurons and median eminence showed similar changes, but quantitative differences were noted. A striking ultrastructural recovery of the arcuate neurons and axons in the outer zone of the median eminence was observed 21 days after injection of either 1 mM or 5 mM vinblastine. The results are discussed in relation to axoplasmic transport and axonal degeneration.Supported by CONICET and National University of Cuyo, Argentina.Members of the Scientific Research Career of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Argentina.  相似文献   

4.
Summary The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the central nervous system of the domestic mallard was studied by means of the peroxidase-antiperoxidase technique. After colchicine pretreatment, the highest number of TRH-immunoreactive perikarya was found in the parvocellular subdivision of the paraventricular nucleus and in the preoptic region; a smaller number of immunostained perikarya was observed in the lateral hypothalamic area and in the posterior medial hypothalamic nucleus. TRH-immunoreactive nerve fibers were detected throughout the hypothalamus, forming a dense network in the periventricular area, paraventricular nucleus, preoptic-suprachiasmatic region, and baso-lateral hypothalamic area. TRH-containing nerve fibers and terminals occurred in the organon vasculosum of the lamina terminalis and in the external zone of the median eminence in juxtaposition with hypophyseal portal vessels. Scattered fibers were also seen in the internal zone of the median eminence and in the rostral portion of the neural lobe. Numerous TRH-immunoreactive fibers were detected in extra-hypothalamic brain regions: the highest number of immunoreactive nerve fibers was found in the lateral septum, nucleus accumbens, olfactory tubercle, and parolfactory lobe. Moderate numbers of fibers were located in the basal forebrain, dorsomedial thalamic nuclei, hippocampus, interpeduncular nucleus, and the central gray of the mesencephalon. The present findings suggest that TRH may be involved in hypophysiotropic regulatory mechanisms and, in addition, may also act as neuromodulator or neurotransmitter in other regions of the avian brain.  相似文献   

5.
Summary The GABAergic innervation of the mouse pituitary, including the median eminence, was studied at light microscopic and ultrastructural levels by use of a pre-embedding immunocytochemical technique with antibodies directed against GABA. In the median eminence, a high density of GABA-immunoreactive fibers was found in the external layer where the GABAergic varicosities were frequently observed surrounding the blood vessels of the primary capillary plexus. In the internal and subependymal layers, only few fibers were immunoreactive. The intense labeling of the external layer was observed in the entire rostro-caudal extent of the median eminence. In the pituitary proper, a dense network of GABA-immunoreactive fibers was revealed throughout the neural and intermediate lobes, entering via the hypophyseal stalk. The anterior and tuberal lobes were devoid of any immunoreactivity. The GABA-immunoreactive terminals were characterized in the median eminence, and in the intermediate and posterior lobes at the electron-microscopic level. They contained small clear vesicles, occasionally associated with dense-core vesicles or neurosecretory granules. In the intermediate lobe they were seen to be in contact with the glandular cells. In the posterior lobe and in the median eminence, GABA-immunoreactive terminals were frequently located in the vicinity of blood vessels. These results further support the concept of a role of GABA in the regulation of hypophyseal functions, via the portal blood for the anterior lobe, directly on the cells in the intermediate lobe, and via axo-axonic mechanisms in the median eminence and posterior lobe.  相似文献   

6.
Summary Immunohistochemically, nerve fibers and terminals reacting with anti-N-terminal-specific but not with anti-C-terminal-specific glucagon antiserum were observed in the following rat hypothalamic regions: paraventricular nucleus, supraoptic nucleus, anterior hypothalamus, arcuate nucleus, ventromedial hypothalamic nucleus and median eminence. Few fibers and terminals were demonstrated in the lateral hypothalamic area and dorsomedial hypothalamic nucleus. Radioimmunoassay data indicated that the concentration of gut glucagon-like immunoreactivity was higher in the ventromedial nucleus than in the lateral hypothalamic area. In food-deprived conditions, this concentration increased in both these parts. This was also verified in immunostained preparations in which a marked enhancement of gut glucagon-like immunoreactivity-containing fibers and terminals was observed in many hypothalamic regions. Several immunoreactive cell bodies were found in the ventromedial and arcuate nuclei of starved rats. Both biochemical and morphological data suggest that glucagon-related peptides may act as neurotransmitters or neuromodulators in the hypothalamus and may be involved in the central regulatory mechanism related to feeding behavior and energy metabolism.  相似文献   

7.
本文用免疫电镜方法证明:促生长素抑制素样免疫反应神经末梢分布于弓状棱并与未标记的树突形成轴树突触。在正中隆起的纤维层和栅状层内均可见上述免疫反应末梢,大多数紧贴门脉毛细血管基底膜周围甚至穿入基底膜内。免疫反应末梢尚可与未标记的末梢形成轴轴突触样结构。  相似文献   

8.
The distribution of growth hormone releasing factor (GHRF) immunoreactive structures in the rat hypothalmus was studied after colchicine treatment with PAP immunocytochemistry in vibratome sections using an antiserum directed to rat hypothalamic GHRF. The majority of the GHRF-immunoreactive cell bodies were found in the arcuate nucleus, the medial perifornical region, and the ventral premammillary nuclei of the hypothalamus. Scattered cells were seen in the lateral basal hypothalamus, the medial and lateral portions of the ventromedial nucleus, and the dorsomedial and paraventricular nuclei. Immunoreactive fibers were observed in all the regions mentioned above. GHRF terminals were located in the central region of the median eminence. In addition, GHRF-immunoreactive neuronal processes were seen in the ventral region of the dorsomedial nucleus, the medial preoptic and suprachiasmatic regions, dorsal portion of the suprachiasmatic nucleus, bed nucleus of the stria terminals and the hypothalamic portion of the stria terminals. The localization of GHRF-immunoreactive terminals in the median eminence reinforces the view that GHRF plays a physiological role in the regulation of pituitary function. In addition, the localization of GHRF-immunoreactive structures in areas not usually considered to project to the median eminence suggest that GHRF may act as a neuromodulator or neurotransmitter.  相似文献   

9.
The projection from the medial preoptic area to the median eminence of the cat was clarified by electron microscopy. After placing the electrolytic lesion in the preoptic area several kinds of degenerating neuronal processes and terminals were observed in the external layer of the median eminence. The one was dark shrunk terminals containing dense cored vesicles, the other was the dark ones containing myeline figure-like structure. The relationship between catecholamine-containing nerve endings and RH/IH-containing endings in the external layer of the median eminence was discussed.  相似文献   

10.
Summary The fine structure of arcuate neurons of the arcuate nucleus, the ependymal tanycytes and the contact zone of the median eminence was examined following immobilization, an acute stress which significantly activated the hypothalamo-pituitary-adrenal (HPA) axis. Arcuate neurons of immobilized adult male hamsters displayed morphological indications of heightened activity; the number of lysosomes and dense core vesicles (80–120 nm) was increased. A markedly greater number of dense core vesicles was present in axon terminals of the contact zone of the mid-central median eminence and the ventral proximal stalk.Tanycytes of the median eminence exhibited an augmented number of electron dense bodies in both perikarya and end processes. These results indicate that the arcuate neurons, the axons of the contact zone, and the ependymal tanycytes of the hamster medial basal hypothalamus (MBH) may be involved in the response to immobilization.This work was supported by Program Project Grant #NS-11642  相似文献   

11.
In the present study, a polyclonal antibody against pro-opiomelanocortin derivatives was characterized biochemically. Its immunoreactivity with structures of the arcuate nucleus and the median eminence was investigated by means of the immunogold method and compared with its reaction on adenohypophyseal cells with and without pre-adsorption with pro-opiomelanocortin derivatives. The antiserum detects ACTH and its fragments, in particular alpha-MSH, and beta-endorphin. In the adenohypophysis gold particles are exclusively located on small secretory granules situated in the periphery of branched cells. In the perikarya of the arcuate nucleus gold particles are observed on terminal vesicles abutting from the cis-face of the Golgi apparatus, on granules in its direct vicinity and on small dense core vesicles preferentially located in the cell periphery. Immunoreactive gold-labeled fiber profiles are found in a sub- or intra-ependymal position as well as in the nuclear neuropil proper. Here axodendritic and axosomatic synapses are observed. In both situations the gold particles are mostly restricted to the small dense core vesicles and do not decorate the synaptic vesicles. In the median eminence gold labeled fibers are detected in all layers. The labeled fibers can be closely apposed to tanycytic processes, without, however, forming special contact differentiations. In direction to the perivascular layer of the external zone the labeled profiles are more frequently arranged in groups intermingled with unlabeled fibers. The axons decorated with gold particles can be freely exposed to the perivascular space or are found as single processes in close vicinity to the capillary wall. Subsequent to preincubation of the native antiserum with ACTH1-39 and ACTH18-39 (= CLIP) neither adenohypophyseal cells nor perikarya and fibers in the arcuate nucleus nor axons in the median eminence are decorated with gold particles. Preincubation of the native antiserum with alpha-MSH or beta-endorphin does not change the immunoreaction with the small, peripherally situated granules in the branched adenohypophyseal cells. In neurons of the arcuate nucleus and in fibers of the median eminence, however, the immunoreaction is completely extinguished when the antibody is pre-incubated with alpha-MSH, whereas subsequent to preincubation with beta-endorphin only the amounts of labeled structures are reduced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Seki  T.  Nakai  Y.  Shioda  S.  Mitsuma  T.  Kikuyama  S. 《Cell and tissue research》1983,233(3):507-516
The distribution of immunoreactive thyrotropin-releasing hormone (TRH) in the forebrain and hypophysis of Rana catesbeiana was studied by means of specific radioimmunoassay and immunohistochemistry based on peroxidase-antiperoxidase (PAP) techniques. A relatively high concentration of immunoassayable TRH is present in the hypothalamus. Immunoreactive TRH cell bodies are found in the anterior part of the preoptic nucleus, the dorsal infundibular nucleus, the nucleus of diagonal band of Broca, and the medial part of the amygdala. Immunoreactive nerve terminals are observed in the neurohypophysis and the external layer of the median eminence, where the terminals are in close contact with the capillary loops of the hypophyseal portal vessels. The possible role of TRH in the frog brain is discussed.  相似文献   

13.
Summary The distribution of dopaminergic nerve cells in the cat hypothalamus, particularly in the arcuate and periventricular nuclei, and the projections of their axons were studied by fluorescence and electron microscopy after electrothermic coagulation. The majority of these perikarya were located in the arcuate nucleus and the periventricular nucleus dorsocaudal to the optic chiasma. Large lesions caused a wide and diffuse depletion of dopamine fluorescence within the external layer; small lesions caused ipsilateral partial depletion of the dopamine fluorescence. Electron microscopic observations in animals with a lesioned arcuate nucleus revealed that in the external layer degenerating nerve terminals are engulfed by glial processes. In some cases nerve fibers had entirely disappeared and a heavy reactive proliferation of glial processes was observed. Persistence of the form of the median eminence in spite of the extensive degeneration of its nervous elements is considered to depend upon this glial proliferation.Dedicated to Professor W. Bargmann in honour of his 70th birthday  相似文献   

14.
Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tuberoinfundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region. Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and/or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.Key words: Dopamine D1 and D2 receptors, tubero-infundibular dopamine neurons, dopamine receptor colocalization, arcuate-median eminence complex, volume transmission, luteinizing hormone releasing hormone  相似文献   

15.
The electron microscopic investigation was performed to analyze somatostatin-contained nerve terminals in the median eminence of 21 days old malnourished rats' hypothalamus. In nerve terminals of malnourished animals in compared with controls ones there was found the increased density of granular vesicles (11.62 +/- 0.40 and 8.56 +/- 0.39 in 1 micron2, respectively) and decreased density of electron lucent vesicles with 120-160 nm diameter (1.66 +/- 0.18 and 3.43 +/- 0.26 in 1 micro2, respectively). The revealed increase in density of granular vesicles in axon terminals with positive immunohistochemical reaction to somatostatin in malnourished rats was explained by slow somatostatin release.  相似文献   

16.
The distribution of neuropeptide Y-immunoreactive (NPY-IR) perikarya, fibers, and terminals was investigated in the brain of two species of hibernatory ground squirrels, Spermophilus tridecemlineatus and S. richardsonii, by means of immunohistochemistry. In the telencephalic and diencephalic structures studied, distinct patterns of NPY-IR were observed which were essentially identical in male and female animals of both species. No differences in amount or distribution of NPY-IR structures were observed between animals which had been in induced hibernation for several months before sacrifice in March/April and those sacrificed one week after their capture in May. In some brain structures (e.g., the hypothalamic arcuate nucleus), IR cell bodies were observed only after pretreatment with colchicine. NPY-IR perikarya and fibers were found in the cerebral cortex, caudate nucleus-putamen, and dorsal part of the lateral septal nucleus. Dense fiber plexuses were seen in the lateral and medial parts of the bed nucleus of the stria terminalis. The numbers of IR perikarya observed in the medial part of the nucleus increased following intraventricular colchicine injections. The accumbens nucleus exhibited few IR cells and many fibers. Claustrum and endopiriform nuclei showed a considerable number of stained cells and fibers that increased in number and staining intensity in colchicine-treated ground squirrels. The induseum griseum showed a small band of IR cell bodies and varicose fibers. Bipolar of multipolar IR cells and varicose fibers were found in the basal nucleus of the amygdala. Dense fiber plexuses as well as IR terminals were seen in the median, medial, and lateral preoptic areas of the hypothalamus. Terminals and relatively few fibers were located in the periventricular, paraventricular, and supraoptic nuclei. The anterior, lateral, dorsomedial, and ventromedial hypothalamic nuclei contained relatively large numbers of terminals and fibers. In the suprachiasmatic nuclei, dense terminals were distributed mainly in the ventromedial subdivision. In the median eminence, immunoreactive terminals were concentrated in the external layer, with fibers predominant in the internal layer. NPY-IR perikarya were observed only in the arcuate nucleus of the hypothalamus and only following colchicine treatment. In the epithalamus (superficial part of the pineal gland and habenular nuclei), varicose fibers appeared mainly in perivascular locations (pineal) or as a dense plexus (habenular nuclei). These results from ground squirrels are discussed in comparison to those obtained in other species and with regard to considerations of the physiological role of NPY.  相似文献   

17.
Summary The appearance and localization of LHRH were studied in the developing hypothalamus of perinatal rats using the unlabelled antibody method. By light microscopy, immunoreactive LHRH was first detected as brown dots on day 18.5 of gestation in the OVLT and on day 19.5 in the median eminence, respectively. When the median eminence was examined by the preembedding immunohistochemistry technique for electron microscopy, the occurrence of immunoreactive LHRH fibers could be demonstrated on day 18.5. These fibers were thin and very occasionally encountered near the surface of the lateral regions of the median eminence. The axoplasm contained a few immunopositive secretory granules and also extragranular immunoreactive products. With development, a gradual increase was noted both in number and size of nerve fibers with a concomitant accumulation of secretory granules within the axoplasm.A possible physiological significance of LHRH is discussed in relation to the onset of hypothalamo-hypophysial system in fetal life.  相似文献   

18.
Summary The uranaffin reaction in rat anococcygeus muscle, which receives a dual innervation of both adrenergic and non-cholinergic, non-adrenergic nerves was examined. Dense reaction product was observed in the vesicular membranes and/or the cores of some synaptic vesicles in the adrenergic nerve terminals. Occasional vesicles were filled up with dense reaction product. In the prominent population of small clear vesicles, however, no dense reaction product was observed. The number of small granular vesicles in the adrenergic nerve terminals was markedly increased after the administration of 5-hydroxydopamine (5-OHDA). These granular vesicles were moderately stained with uranaffin deposit on the cores but their limiting membranes possessed no uranaffin deposit at all.In the non-adrenergic nerve terminals, on the other hand, uranaffin deposit of variable density was observed on the cores of large granular vesicles but never on their limiting membranes or on the small clear vesicles. There was no change in the axon profiles after the administration of 5-OHDA.The possible occurrence of purines in the cores of large granular vesicles in the non-adrenergic nerves is discussed.  相似文献   

19.
The distribution of delta sleep-inducing peptide immunoreactivity (DSIP-IR) was studied in the rat diencephalon. Varicose nerve fibers exhibiting DSIP-IR were found throughout the mediobasal hypothalamus, most frequently in the hypothalamic arcuate nucleus and in the adjoining median eminence and pituitary stalk. This innervation provides a basis for the involvement of DSIP in neuroendocrine regulation at the hypothalamic level. In the hypothalamus, DSIP-IR innervation was also observed close to the third ventricle and within the mamillary complex. Despite pretreatment with colchicine, no evidence of immunoreactive cell bodies containing DSIP-IR could be found.  相似文献   

20.
Both proopiomelanocortin (POMC) and ghrelin peptides are implicated in the feeding regulation. The synaptic relationships between POMC- and ghrelin-containing neurons in the hypothalamic arcuate nucleus were studied using double-immunostaining methods at the light and electron microscope levels. Many POMC-like immunoreactive axon terminals were found to be apposed to ghrelin-like immunoreactive neurons and also to make synapses with ghrelin-like immunoreactive neuronal perikarya and dendritic processes. Most of the synapses were symmetrical in shape. A small number of synapses made by ghrelin-like immunoreactive axon terminals on POMC-like immunoreactive neurons were also identified. Both the POMC- and ghrelin-like immunoreactive neurons were found to contain large dense granular vesicles. These data suggest that the POMC-producing neurons are modulated via synaptic communication with ghrelin-containing neurons. Moreover, ghrelin-containing neurons may also have a feedback effect on POMC-containing neurons through direct synaptic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号