首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assumption that the mushroom stem has the ability to undergo autonomic straightening enables a mathematical model to be written that accurately mimics the gravitropic reaction of the stems of Coprinus cinereus . The straightening mechanism is called curvature compensation here, but is equivalent to the 'autotropism' that often accompanies the gravitropic reactions of axial organs in plants. In the consequently revised local curvature distribution model, local bending rate is determined by the difference between the 'bending signal' (generated by gravitropic signal perception systems) and the 'straightening signal' (proportional to the local curvature at the given point). The model describes gravitropic stem bending in the standard assay with great accuracy but has the virtue of operating well outside the experimental data set used in its derivation. It is shown, for example, that the mathematical model can be fitted to the gravitropic reactions of stems treated with metabolic inhibitors by a change of parameters that parallel the independently derived physiological interpretation of inhibitor action. The revised local curvature distribution model promises to be a predictive tool in the further analysis of gravitropism in mushrooms.  相似文献   

2.
The sensitivity to gravitational stimulation of excised stems of the mushroom fruit body of Coprinus cinereus was determined using clinostat rotation to remove partially-stimulated stems from the normal unidirectional gravitational field. For the strain and conditions tested, the presentation time (the minimum time of stimulation required to elicit a gravitropic reaction) was determined to be 9.6 min. This is the first time the presentation time has been determined for a fungal gravitropic response. Constructional details are given of the clinostats employed in the research and their further use is discussed.  相似文献   

3.
4.
H Fukaki  H Fujisawa    M Tasaka 《Plant physiology》1996,110(3):933-943
We have characterized the gravitropic response of inflorescence stems in Arabidopsis thaliana. When the inflorescence stems were placed horizontally, they curved upward about 90 degrees within 90 min in darkness at 23 degrees C, exhibiting strong negative gravitropism. Decapitated stem segments (without all flowers, flower buds, and apical apices) also showed gravitropic responses when they included the elongation zone. This result indicates that the minimum elements needed for the gravitropic response exist in the decapitated inflorescence stem segments. At least the 3-min gravistimulation time was sufficient to induce the initial curvature at 23 degrees C after a lag time of about 30 min. In the gravitropic response of inflorescence stems, (a) the gravity perception site exists through the elongating zone, (b) auxin is involved in this response, (c) the gravitropic curvature was inhibited at 4 degrees C but at least the gravity perception step could occur, and (d) two curvatures could be induced in sequence at 23 degrees C by two opposite directional horizontal gravistimulations at 4 degrees C.  相似文献   

5.
Although circumnutation occurs widely in higher plants, its mechanism is little understood. The idea that circumnutation is based on gravitropism has long been investigated, but the reported results have been controversial. We used dark-grown coleoptiles of rice (Oryza sativa L.) to re-investigate this issue. The following results supported the existence of a close relationship between gravitropism and circumnutation: (1) circumnutation disappears on a horizontal clinostat; (2) circumnutation is interrupted by a gravitropic response and re-initiated at a definable phase after gravitropic curvature; (3) circumnutation can be re-established by submergence and a brief gravitropic stimulation in the coleoptiles that have stopped nutating in response to red light; and (4) lazy mutants show no circumnutation. In spite of these results, however, there were cases in which gravitropism and circumnutation could be separated. Firstly, the non-circumnutating lazy coleoptile showed nearly a wild-type level of gravitropic responsiveness in its upper half, although this part was an active site of both gravitropism and circumnutation in wild-type coleoptiles. Secondly, coleoptiles could nutate without overshooting the vertical when developing phototropic curvature. It is concluded that gravitropism influences, but it is not directly involved in the process of circumnutation. It is further suggested that a gravity signal, shared with gravitropism, contributes to the maintenance of circumnutation.  相似文献   

6.
Gravitropically-stimulated seedlings show autotropism in weightlessness   总被引:1,自引:0,他引:1  
In a spaceflight experiment, autotropism by oat ( Avena sativa L.) coleoptiles following gravitropic responses was prominent in weightlessness: counter-reactions led to the straightening of the curved coleoptiles. This was not the case during clinorotation on earth. The autotropic reactions appeared to be related to the stimulus received during the stimulus period, i.e. the greater the response the greater the autotropic counter-reaction. Previous models of the gravitropic system which predicted that coleoptiles would not straighten in weightlessness are disproved. A modification to one of the models is proposed which includes the autotropic response observed in spaceflight. The nature of the counter-reactions in the absence of gravitropic stimulation is discussed.  相似文献   

7.
Yamamoto K  Kiss JZ 《Plant physiology》2002,128(2):669-681
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.  相似文献   

8.
The effect of the inhibitors of calcium channels on red-light (R)-mediated inhibition of gravitropic bending was studied in excised wheat (Triticum aestivumL.) coleoptiles. The effect of a short R pulse (2 min) preceding the gravitropic stimulation was completely alleviated by a similar pulse of far-red light (FR), when the latter preceded the gravitropic stimulation and the delay between R and FR pulses did not exceed 20 min. Plant memory of the R pulse lasted up to 40 min. Neither R nor FR exerted any effect on the gravitropic reaction when applied after gravitropic stimulation. Treatment with 1 M of verapamil, LaCl3, GdCl3, or ruthenium red before the gravitropic stimulation prevented or released the R-exerted suppression of the gravitropic response (GR). The GR in coleoptiles is apparently regulated by the phytochrome system at the induction phase and involves calcium channels.  相似文献   

9.
Gravitropism of maize and rice coleoptiles was investigated with respect to its dependence on the angle of displacement or the initial stimulation angle (ISA). Close examination of curvature kinetics and the response to a drop in stimulation angle (SA) indicated that the gravtropic response during an early but substantial part of the curvature development is directly related to the ISA, there being no effect of the reduction of SA resulting from the curvature response itself. On the basis of this finding, the relationship between the steady SA and the curvature rate was determined. In maize, the curvature rate increased linearly with the sines of SAs up to an SA of 90 degrees. Rice coleoptiles, however, showed a saturation curve in the same range of SAs. The saturation profile was nearly identical between coleoptiles grown in air and those submerged in water, although the latter elongated much faster. Rice coleoptiles appeared to be far more sensitive to gravity than maize coleoptiles. It is concluded that the sensitivity to gravity, assessed through dependence on ISA, is a property inherent to a given gravitropic organ. Long-term measurements of curvature indicated that the coleoptiles bend back past the vertical. This overshooting was marked in submerged rice coleoptiles.  相似文献   

10.
Autotropism, automorphogenesis, and gravity   总被引:3,自引:0,他引:3  
Segments of organs that have undergone gravitropic curvature later straighten during the course of gravitropism or after the g ‐vector becomes randomized on a clinostat. Little is known about the mechanisms underlying these and perhaps related phenomena which have been described with various overlapping terms such as autotropism, autotropic straightening, automorphosis, automorphogenesis, automorphic curvature, and gravitropic straightening. The types of phenomena that historically have been named by the above terms are reviewed critically with respect to an interaction with gravitropism. We suggest that the term "autotropism" should not be applied to the phenomenon of organ straightening that occurs during the course of gravitropism, since this straightening is part of a complex series of local growth adjustments overall through time, and since this phenomenon is not itself a tropistic response to a directional exogenous stimulus. It is suggested that the term autotropism should be used only for the phenomenon of organ straightening that occurs after the g ‐vector is randomized on a clinostat or withdrawn in the microgravity conditions of spaceflight. Usage of the term automorphogenesis is most appropriate for describing curvatures or orientations that result from morphological relationships such as in nastic curvatures.  相似文献   

11.
Removal of large segments of the apical part of the stipe of Coprinus cinereus (extending to about half its length) affected neither the ability of the stipe to show gravitropic bending nor its ability to compensate the curvature so induced and adjust to the vertical. However, gravitropic reaction time was directly proportional to the amount of stipe removed. Application of lateral loads of up to 20 g had no adverse effects on adjustment of the stipe to the vertical and continued vertical growth. It is concluded that sensing the distribution of extracellular mass and/or mechanical stress is unlikely to be a component of the control of gravitropic bending in C. cinereus stipes.  相似文献   

12.
Parker KE  Briggs WR 《Plant physiology》1990,94(4):1763-1769
We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature.  相似文献   

13.
Differential elongation of stipe hyphae drives the gravitropic reorientation of Flammulina velutipes (Agaricales) fruiting bodies. The gravitropic curvature is strictly dependent on the presence of the transition zone between pileus and stipe. Elongation growth, providing the driving force for curvature, is also promoted by the pileus. Gravitropic curvature is successfully suppressed by clinostatic rotation, but the elongation rate is not affected. Explantation of fruiting body stipes lowers curvature and elongation rates corresponding to explant size reduction. In Flammulina, 25 mm length of transition zone explants is an efficient size for reproducible curvature and elongation during 48- to 72-h curvature tests. Submersion of specimens in aqueous medium causes cessation of the gravitropic curvature, but does not affect elongation. Thus the involvement of a diffusible factor in transmission of the curvature signal is probable. Splitting the fruiting body stipe in segments of 1/8 diameter does not suppress the gravitropic response, and the segments are individually reoriented to the vertical. It is concluded that the graviresponse of the Flammulina fruiting body is based on cellular perception of the gravistimulus and that a differential growth signal is transmitted in the stipe by a soluble factor that regulates hyphal elongation.  相似文献   

14.
15.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

16.
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.  相似文献   

17.
Abstract This time course and location of gravitropically induced curvatures in stems of goosegrass (Galium aparine L.), a member of the Rubiaceae, have been investigated. In the early stages of the response (0–5 h), curvature develops throughout the growing region, and is followed by an autotropic straightening which affects the internodes only, leading to the production of essentially straight internodes some 15 h after the onset of gravistimulation. Curvatures developing in the nodal regions, however, continue to increase over this period, and are not subject to reversal by autotropism. The nodal curvatures are not entirely dependent on the presence of any other part of the plant, since marked curvatures can be induced in isolated nodal segments. This pattern of response leads ultimately to correction of the growth direction of the plant by means of curvature responses confined exclusively to the nodes, despite the initial participation of both nodes and internodes in the gravitropic reaction.  相似文献   

18.
Gravity perception and gravitropic response are essential for plant development. In herbaceous species, it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However, the early signaling events leading to stem reorientation are not fully known, especially in woody species in which primary and secondary growth occur. Thirty-six percent of the identified proteins that were differentially expressed after gravistimulation were established as potential Thioredoxin targets. In addition, Thioredoxin h expression was induced following gravistimulation. In situ immunolocalization indicated that Thioredoxin h protein co-localized with the amyloplasts located in the endodermal cells. These investigations suggest the involvement of Thioredoxin h in the first events of signal transduction in inclined poplar stems, leading to reaction wood formation.  相似文献   

19.
Using video recordings we have completed the first kinetic analysis of mushroom stem gravitropism. The stem became gravireceptive after completion of meiosis, beginning to bend within 30 minutes of being placed horizontal. Stem bending first occurred in the apical 15% of its length, then the position of the bend moved rapidly towards the base, traversing 40% of stem length in 2.5 h. Meanwhile, the stem elongated by 25%, mostly in its upper half but also in basal regions. If the apex was pinned horizontally the stem base was elevated but overshot the vertical, often curling through more than 300 degrees. When the base was pinned to the horizontal (considered analogous to the normal situation), 90% of the initial bend was compensated as the stem brought its apex accurately upright, rarely overshooting the vertical. The apex had to be free to move for this curvature compensation to occur. Stems transferred to a clinostat after some minutes gravistimulation showed curvature which increased with the length of initial gravistimulation, indicating that continued exposure to the unilateral gravity vector was necessary for continued bending. Such gravistimulated stems which bent on the clinostat subsequently relaxed back towards their original orientation. Reaction kinetics were unaffected by submergence in water, suggesting that mechanical events do not contribute, but submerged stems bent first at the base rather than apex. In air, the gravitropic bend appeared first near the apex and then moved towards the base, suggesting basipetal movement of a signal. In water, the pattern of initial bending was changed (from apex to base) without effect on kinetics. Taken together these results suggest that bending is induced by a diffusing chemical growth factor (whose extracellular propagation is enhanced under water) which emanates from the apical zone of the stem. The apex is also responsible for regulating compensation of the bend so as to bring the tip to the vertical. The nature of this latter stimulus is unknown but it is polarized (the apex must be free to move for the compensation to occur) and it may not require reference to the unilateral gravity vector.  相似文献   

20.
It has been found that coleoptiles of dark-grown rice (Oryza sativa L.) seedlings undergo regular circumnutation in circular orbits with periods of about 180 min. Both clockwise and counter-clockwise movements were observed, but individual coleoptiles continued to rotate only in one direction. Light-grown seedlings did not show circumnutation. In fact, dark-grown seedlings were found to cease circumnutating in response to a pulse of red light (R). This light-induced inhibition of circumnutation was demonstrated to involve both a FR-inducible very-low-fluence response, solely mediated by phytochrome A, and a FR-reversible low-fluence response, mediated by phytochrome B and/or C. The R-induced inhibition of circumnutation showed temporal agreement with the R-induced inhibition of coleoptile growth, suggesting that the former results from the latter. However, about 25% of growth activity remained after R treatment, indicating that circumnutation is more specifically regulated by phytochrome. The R-treated coleoptile showed gravitropism. Investigation of the growth differential for gravitropic curvature revealed that gravitropic responsiveness was rather enhanced by R. The results suggested that gravitropism is not a cause of circumnutation. It remained probable, however, that gravity perception is a part of the mechanism of circumnutation. It is speculated that the circumnutation investigated aids the seedling shoot in growing through the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号