共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The voltage-dependent channel formed in planar lipid bilayers by colicin E1, or its channel-forming C-terminal fragments, is susceptible to destruction by the nonspecific protease pepsin under well-defined conditions. In particular, pepsin acts only from thecis side (the side to which colicin has been added) and only upon channels in the closed state. Channels in the open state are refractory to destruction bycis pepsin, and neither open nor closed channels are destroyed bytrans pepsin. Colicin E1 channels are normally turned on bycis positive voltages and turned off bycis negative voltages. For large (>80 mV) positive voltages, however, channels inactivate subsequent to opening. Associated with the inactivated state, some channels become capable of being turned on bycis negative voltages and turned off bycis positive voltages, as if the channel-forming region of the molecule has been translocated across the membrane. Consistent with this interpretation is the ability now oftrans pepsin to destroy these reversed channels when they are closed, but not when they are open, whereascis pepsin has no effect on them in either the open or closed state. Our results indicate that voltage gating of the E1 channel involves translocation of parts of the protein across the membrane, exposing different domains to thecis andtrans solutions in the different channel states. 相似文献
2.
Gating processes of channels induced by colicin A,its C-terminal fragment and colicin E1 in planar lipid bilayers 总被引:7,自引:0,他引:7
M. Collarini G. Amblard C. Lazdunski F. Pattus 《European biophysics journal : EBJ》1987,14(3):147-153
The dependence on pH and membrane potential of the pore formed by colicin A and its C-terminal 20 kDa fragment has been measured using planar lipid bilayers. The single channel conductance of the pore formed by both colicin A and the fragment increases with pH with an apparent pK of 6.0. At pH 5.0 the gating by membrane potential of the channels formed by either colicin A or its fragment is identical. At the same pH, quite similar pore properties were found when using the related bacteriocin, colicin E1. In agreement with previous studies, these data indicate that the protein structure containing the lumen of the pore resides in the 20 kDa C-terminal part of the colicin A and favours the recently proposed model, based on protein sequence analysis, which proposes that colicin A, E1 and IB C-terminal domains are folded in the same three-dimensional structure. However, it is also shown that colicin A and not its C-terminal fragment undergoes a pH dependent transition between an acidic and a basic form of the pore with an apparent pK of 5.3. The two forms of the pore differ by their gating charge but not by the channel size. These results suggest that there is a pH dependent association between the C-terminal domain carrying the lumen of the pore and another domain of the molecule which affect the pore sensitivity to membrane potential. 相似文献
3.
Summary Colicin Ia forms voltage-dependent channels when incorporated into planar lipid bilayers. A membrane containing many Colicin Ia channels shows a conductance which is turned on when high positive voltages (>+10 mV) are applied to thecis side (side to which the protein is added). The ionic current flowing through the membrane in response to a voltage step shows at first an exponential and then a linear rise with time. The relationship between the steady-state conductance, achieved immediately after the exponential portion, and voltage is S-shaped and is adequately fit by a Boltzmann distribution. The time constant () of the exponential is also dependent on voltage, and the relation between these two parameters is asymmetric aroundV
o
(voltage at which half of the channels are open). In both cases the steepness of the voltage dependence, a consequence of the number of effective gating particles (n) present in the channel, is greatly influenced by the pH of the bathing solutions. Thus, increasing the pH leads to a reduction inn, while acidic pH's have the opposite effects. This result is obtained either by changing the pH on both sides of the membrane or on only one side, be itcis orrans. On the other hand, changing pH on only one side by addition of an impermeant buffer fails to induce any change inn. At the single-channel level, pH had an effect both on the unitary conductance, doubling it in going from pH 4.5 to 8.2, as well as on the fraction of time the channels stay open,F
(v). For a given voltage,F
(v) is clearly diminished by increasing the pH. This titration of the voltage sensitivity leads to the conclusion that gating in the Colicin Ia molecule is accomplished by charged amino-acid residues present in the protein molecule. Our results also support the notion that these charged groups are inside the aqueous portion of the channel. 相似文献
4.
A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1 总被引:5,自引:0,他引:5
Cleavage of colicin E1 molecules with a variety of proteases or with cyanogen bromide (CNBr) generates COOH-terminal fragments which have channel-forming activity similar to that of intact colicin in planar lipid bilayer membranes. The smallest channel-forming fragment obtained by CNBr cleavage of the wild-type molecule consists of the C-terminal 152 amino acids. By the use of oligonucleotide-directed mutagenesis, we have made nine mutants along this 152 amino acid peptide, in which an amino acid was replaced by methionine in order to create a new CNBr cleavage site. The smallest of the CNBr-cleaved C-terminal fragments with channel-forming activity, in planar bilayer membranes, was generated by cleavage at new Met position 428 and has 94 amino acids, whereas a 75 amino acid peptide produced by cleavage of a new Met at position 447 did not have channel activity. The NH2-terminus of the channel-forming domain of colicin E1 appears therefore to lie between residues 428 and 447. Since, however, the last six C-terminal residues of the colicin can be removed without changing activity, the number of amino acids necessary to form the channel is 88 or less. In addition, the unique Cys residue in colicin E1 was replaced by Gly, and nine mutants were then made with Cys placed at sequential locations along the peptide for eventual use as sulfhydryl attachment sites to determine the local environment of the replaced amino acid. In the course of making 21 mutants, eight charged residues have been replaced by uncharged Met or Cys without changing the biological activity of the intact molecule. It has been proposed previously that the conformation of the colicin E1 channel is a barrel formed from five or six alpha-helices, each having 20 amino acids spanning the membrane and two to four residues making the turn at the boundary of the membrane. Our finding that 88 amino acids can make an active channel, combined with recently reported stoichiometric evidence that the channel is a monomer excludes this model and adds significant constraints which can be used in building a molecular model of the channel. 相似文献
5.
Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB
Collins ES Whittaker SB Tozawa K MacDonald C Boetzel R Penfold CN Reilly A Clayden NJ Osborne MJ Hemmings AM Kleanthous C James R Moore GR 《Journal of molecular biology》2002,318(3):787-804
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself. 相似文献
6.
L. J. Bishop F. S. Cohen V. L. Davidson W. A. Cramer 《The Journal of membrane biology》1986,92(3):237-245
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl– efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation. 相似文献
7.
Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. 总被引:2,自引:1,他引:2 下载免费PDF全文
Y. Kim K. Valentine S. J. Opella S. L. Schendel W. A. Cramer 《Protein science : a publication of the Protein Society》1998,7(2):342-348
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190 residue C-terminal colicin E1 channel domain is the largest polypeptide to have been characterized by 15N solid-state NMR spectroscopy in oriented membrane bilayers. The 15N-NMR spectra of the colicin E1 show that: (1) the structure and dynamics are independent of anionic lipid content in both oriented and unoriented samples; (2) assuming the secondary structure of the polypeptide is helical, there are both trans-membrane and in-plane helical segments; (3) trans-membrane helices account for approximately 20-25% of the channel polypeptide, which is equivalent to 38-48 residues of the 190-residue polypeptide. The results of the two-dimensional PISEMA spectrum are interpreted in terms of a single trans-membrane helical hairpin inserted into the bilayer from each channel molecule. These data are also consistent with this helical hairpin being derived from the 38-residue hydrophobic segment near the C-terminus of the colicin E1 channel polypeptide. 相似文献
8.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl– over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1. 相似文献
9.
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import. 相似文献
10.
Macdonald CJ Tozawa K Collins ES Penfold CN James R Kleanthous C Clayden NJ Moore GR 《Journal of biomolecular NMR》2004,30(1):81-96
The 61 kDa colicin E9 protein toxin enters the cytoplasm of susceptible cells by interacting with outer membrane and periplasmic helper proteins, and kills them by hydrolysing their DNA. The membrane translocation function is located in the N-terminal domain of the colicin, with a key signal sequence being a pentapeptide region that governs the interaction with the helper protein TolB (the TolB box). Previous NMR studies (Collins et al., 2002 J. Mol. Biol. 318, 787-804) have shown that the N-terminal 83 residues of colicin E9, which includes the TolB box, is largely unstructured and highly flexible. In order to further define the properties of this region we have studied a fusion protein containing residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight-residue linking sequence. 53 of the expected 58 backbone NH resonances for the first 61 residues and all of the expected 7 backbone NH resonances of the linking sequence were assigned with 3D (1)H-(13)C-(15)N NMR experiments, and the backbone dynamics of these regions investigated through measurement of (1)H-(15)N relaxation properties. Reduced spectral density mapping, extended Lipari-Szabo modelling, and fitting backbone R(2) relaxation rates to a polymer dynamics model identifies three clusters of interacting residues, each containing a tryptophan. Each of these clusters is perturbed by TolB binding to the intact colicin, showing that the significant region for TolB binding extends beyond the recognized five amino acids of the TolB box and demonstrating that the binding epitope for TolB involves a considerable degree of order within an otherwise disordered and flexible domain. Abbreviations : Im9, the immunity protein for colicin E9; E9 DNase, the endonuclease domain of colicin E9; HSQC, heteronuclear single quantum coherence; ppm, parts per million; DSS, 2,2-(dimethylsilyl)propanesulfonic acid; TSP, sodium 3-trimethylsilypropionate; T(1 - 61)-DNase fusion protein, residues 1-61 of colicin E9 connected to the N-terminus of the E9 DNase by an eight residue thrombin cleavage sequence. 相似文献
11.
Channels formed by colicin E1 in planar lipid bilayers have large diameters and conduct both cations and anions. The rates at which ions are transported, however, are relatively slow, and the relative anion-to-cation selectivity is modulated over a wide range by the pH of the bathing solutions. We have examined the permeability of these channels to cationic probes having a variety of sizes, shapes, and charge distributions. All of the monovalent probes were found to be permeant, establishing a minimum diameter at the narrowest part of the pore of approximately 9 A. In contrast to this behavior, all of the polyvalent organic cations were shown to be impermeant. This simple exclusionary rule is interpreted as evidence that, when steric restrictions require partial dehydration of an ion, the structure of the channel is able to provide a substitute electrostatic environment for only one charged group at time. 相似文献
12.
In the presence of a low pH environment, the channel-forming T domain of diphtheria toxin undergoes a conformational change that allows for both its own insertion into planar lipid bilayers and the translocation of the toxin's catalytic domain across them. Given that the T domain contributes only three transmembrane segments, and the channel is permeable to ions as large as glucosamine(+) and NAD(-), it would appear that the channel must be a multimer. Yet, there is substantial circumstantial evidence that the channel may be formed from a single subunit. To test the hypothesis that the channel formed by the T domain of diphtheria toxin is monomeric, we made mixtures of two T domain constructs whose voltage-gating characteristics differ, and then observed the gating behavior of the mixture's single channels in planar lipid bilayers. One of these constructs contained an NH(2)-terminal hexahistidine (H6) tag that blocks the channel at negative voltages; the other contained a COOH-terminal H6 tag that blocks the channel at positive voltages. If the channel is constructed from multiple T domain subunits, one expects to see a population of single channels from this mixture that are blocked at both positive and negative voltages. The observed single channels were blocked at either negative or positive voltages, but never both. Therefore, we conclude that the T domain channel is monomeric. 相似文献
13.
J. O. Bullock 《The Journal of membrane biology》1992,125(3):255-271
Colicin E1 is a plasmid-encoded bacteriocidal protein which, though water soluble when secreted by its host bacterium, spontaneously interacts with planar lipid bilayers to form voltage-gated ion channels. In asolectin bilayers, the preference for anions over cations exhibited by these channels at low pH can be reversed by raising the pH on either side of the membrane. When incorporated into membranes composed of either of the two zwitterionic lipids, bacterial phosphatidylethanolamine and diphytanoyl phosphatidylcholine, colicin E1 channels were nearly ideally anion selective in the limit of low pH and moderately cation selective at the high pH limit. In phosphatidylcholine membranes, however, the response of these channels to changes in pH exhibited a pattern of behavior peculiar to this lipid. If the side of the membrane on which the protein had been introduced (the cis side) was exposed to pH 4.0, all the channels in the bilayer, whether opened or closed, became refractory to further changes in pH. This irreversibility has been interpreted as evidence that the selectivity of colicin E1 is under the control of a pH-sensitive conformational change. Protonation of groups on the cis side of the membrane appear to be essential to the conversion to the anion-selective state. These groups are rendered kinetically inaccessible to the aqueous phase when the transition takes place in phosphatidylcholine membranes. 相似文献
14.
Structure in the channel forming domain of colicin E1 bound to membranes: the 402-424 sequence 下载免费PDF全文
To explore the structure of the pore-forming fragment of colicin E1 in membranes, a series of 23 consecutive single cysteine substitution mutants was prepared in the sequence 402-424. Each mutant was reacted with a sulfhydryl-specific reagent to generate a nitroxide labeled side chain, and the mobility of the side chain and its accessibility to collision with paramagnetic reagents was determined from the electron paramagnetic resonance spectrum. Individual values of these quantities were used to identify tertiary contact sites and the nature of the surrounding solvent, while their periodic dependence on sequence position was used to identify secondary structure. In solution, the data revealed a regular helix of 11 residues in the region 406-416, consistent with helix IV of the crystal structure. Upon binding to negatively charged membranes at pH 4.0, helix IV apparently grows to a length of 19 residues, extending from 402-420. One face of the helix is solvated by the lipid bilayer, and the other by an environment of a polar nature. Surprisingly, a conserved charged pair, D408-R409, is located on the lipid-exposed face. Evidence is presented to suggest a transmembrane orientation of this new helix, although other topographies may exist in equilibrium. 相似文献
15.
Summary The dependence of colicin channel activity on membrane potential and peptide concentration was studied in large unilamellar vesicles using colicin E1, its COOH-terminal thermolytic peptide and other channel-forming colicins. Channel activity was assayed by release of vesicle-entrapped chloride, and could be detected at a peptide: lipid molar ratio as low as 10–7. The channel activity was dependent on the magnitude of atrans-negative potassium diffusion potential, with larger potentials yielding faster rates of solute efflux. For membrane potentials greater than –60mV (K
in
+
/K
out
+
10), addition of valinomycin resulted in a 10-fold increase in the rate of Cl– efflux. A delay in Cl– efflux observed when the peptide was added to vesicles in the presence of a membrane potential implied a potential-independent binding-insertion mechanism. The initial rate of Cl– efflux was about 1% of the single-channel conductance, implying that only a small fraction of channels were initially open, due to the delay or latency of channel formation known to occur in planar bilayers.The amount of Cl– released as a function of added peptide increased monotonically to a concentration of 0.7 ng peptide/ml, corresponding to release of 75% of the entrapped chloride. It was estimated from this high activity and consideration of vesicle number that 50–100% of the peptide molecules were active. The dependence of the initial rate of Cl– efflux on peptide concentration was linear to approximately the same concentration, implying that the active channel consists of a monomeric unit. 相似文献
16.
Dynamic properties of the colicin E1 ion channel 总被引:1,自引:0,他引:1
W.A. Cramer Y.-L. Zhang S. Schendel A.R. Merrill H.Y. Song C.V. Stauffacher F.S. Cohen 《FEMS microbiology letters》1992,105(1-3):71-81
Abstract The mechanism of channel formation and action of channel-forming colicins is a paradigm for the study of dynamic aspects of membrane-protein interactions. The following experimental results concerning interaction of the colicin E1 channel domain with target membranes, in vitro and in vivo, are discussed: (1) the nature of the translocation-competent state of the channel-forming domain; (2) unfolding of the colicin channel peptide during in vitro binding and anchoring of the channel to liposome membranes at acidic pH; (3) reversal of channel peptide binding to liposomes by an alkaline-directed pH shift; (4) voltage-driven translocation and gating of the ion channel, discussed in the context of a four-helix model for a monomeric channel; (5) rescue of colicin-treated cells by high levels of external K+ ; (6) trypsin rescue of cells depolarized by the colicin ion channel; and (7) interaction of the channel domain with its immunity protein. 相似文献
17.
The molecularity of the ion channel formed by peptide fragments of colicin has taken on particular significance since the length of the active peptide has been shown to be less than 90 amino acids and the lumen size at least 8 A. Cell survival experiments show that killing by colicin obeys single-hit statistics, and ion leakage rates from phospholipid vesicles are first order in colicin concentration. However, interpretation in molecular terms is generally complicated by the requirement of large numbers of colicin molecules per cell or vesicle. We have measured the discharge of potential across membranes of small phospholipid vesicles by following the changes in binding of potential sensitive spin labeled phosphonium ions as a function of the number of colicin fragments added. Because of the sensitivity of the method, it was possible to reliably investigate the effect of colicin in a range where there was no more than 0.2 colicins per vesicle. The quantitative results of these experiments yield a direct molecular stoichiometry and demonstrate that one C-terminal fragment of the colicin molecule per one vesicle is sufficient to induce a rapid ion flux in these vesicles. In addition, the experiments confirm earlier findings that the colicin fragments do not migrate from one vesicle to another at pH 4.5. Similar results are obtained with large unilamellar vesicles. 相似文献
18.
19.
20.
Philip J. White 《Planta》1993,191(4):541-551
Plasma-membrane vesicles were purified by aqueous-polymer two-phase partitioning of a microsomal membrane fraction from rye (Secale cereale L.) roots and incorporated into planar 1-palmitoyl-2-oleoyl phosphatidylethanolamine bilayers. A high-conductance cation channel (a maxi cation channel) was characterized from single-channel electrical recordings. The channel was incorporated into the bilayer with its cytoplasmic surface facing the trans compartment and voltages were referenced cis with respect to trans. The channel was permeable to both monovalent and divalent cations. The unitary conductance was 451 pS in symmetrical 100 mM KCl and 213 pS in symmetrical 100 mM BaCl2. The permeability ratio PKPBa was 1.002.56. Unitary conductances declined in the order K+Rb+>Cs+>Na+> Li+ (monovalent cations) and Ba2+>Sr2+>Ca2+> Mg2+>Co2+>Mn2+ (divalent cations). The relative permeabilities of monovalent cations mirrored their conductivity sequence, whereas the permeabilities of all divalent cations were similar. The maxi cation channel showed complex kinetics, exhibiting both voltage- and time-dependent inactivation and voltage-dependent gating. The voltage dependence of the kinetics shifted in parallel with changes in the reversal potential of the channel. In symmetrical 100 mM KCl, following a voltage step from zero to the test voltage, the channel inactivated and the active-channel lifetime (
i) shortened exponentially as the test voltage was increased. The channel always opened immediately upon depolarization to zero volts, indicating that inactivation of the channel did not result from the loss of any intrinsic factor. The probability of finding an active channel in the open state (P0) exhibited a bell-shaped relationship with membrane potential. At voltages between -40 and 80 mV, P0 exceeded 0.99, but p0 declined abruptly at more extreme voltages. Under ionic conditions which approximated physiological conditions, in the presence of 100 mM KCl on the trans (cytoplasmic) side and 1 mM KCl plus 2 mM CaCl2 on the cis (extracellular) side, the reversal potential was 15.6 mV and the kinetics approximated those observed in symmetrical 100 mM KCl. Thus, the channel would open upon depolarization of the plasma membrane in vivo. If the channel functioned physiologically as a Ca2+ channel it might be involved in intracellular signalling: the channel could open in response to a variety of environmental, developmental and pathological stimuli which depolarize the plasma membrane, allowing Ca2+ into the cytoplasm and thereby initiating a physiological response.Abbreviations EK
Nernst (equilibrium) potential for potassium
- Erev
zero-current (reversal) potential
- I/V
current/voltage
-
c
apparent mean lifetime of the activated-channel closed state
-
i
apparent mean lifetime of the activated channel following a voltage step from zero volts
-
0
apparent mean lifetime of the activated-channel open state
- PE
1-palmitoyl-2-oleoyl phosphatidylethonlamine
- P0
probability of finding the activated channel in an open state
- TEA+
tetraethylammonium
This work was supported by the Agriculture and Food Research Council and by a grant from the Science and Engineering Research Council Membrane Initiative (GR/F 33971) to Prof. E.A.C. MacRobbie (University of Cambridge, UK). 相似文献