首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.  相似文献   

5.
6.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 21 or 30% protein ad libitum. In addition, another group of birds was fed on a regimen consisting of a daily change in the dietary protein level (12 or 30%). This latter group was further subdivided such that one-half of the birds received each level of protein on alternating days. Birds were sampled from 28 to 30 days of age. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12-30%) and to acute changes from 12 to 30%. In contrast, expression of malic enzyme, fatty acid synthase and acetyl CoA carboxylase genes were constant over a dietary protein range of 12-21%, but decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out, however, that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

7.
In the livers of humans and many other mammalian species, beta2-adrenergic receptors (beta2-ARs) play an important role in the modulation of glucose production by glycogenolysis and gluconeogenesis. In male mice and rats, however, the expression and physiological role of hepatic beta2-ARs are rapidly lost with development under normal physiological conditions. We previously described a line of transgenic mice, F28 (Andre C, Erraji L, Gaston J, Grimber G, Briand P, and Guillet JG. Eur J Biochem 241: 417-424, 1996), which carry the human beta2-AR gene under the control of its own promoter. In these mice, hepatic beta2-AR levels are shown to increase rapidly after birth and, as in humans, be maintained at an elevated level in adulthood. F28 mice display strongly enhanced adenylyl cyclase responses to beta-AR agonists in their livers and, compared with normal mice, have increased basal hepatic adenylyl cyclase activity. In this report we demonstrate that, under normal physiological conditions, this increased beta2-AR activity affects the expression of the gluconeogenic and glycolytic key enzymes phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and l-pyruvate kinase and considerably decreases hepatic glycogen levels. Furthermore, we show that the effects of beta-adrenergic ligands on liver glycogen observed in humans are reproduced in these mice: liver glycogen levels are strongly decreased by the beta2-AR agonist clenbuterol and increased by the beta-AR antagonist propranolol. These transgenic mice open new perspectives for studying in vivo the hepatic beta2-AR system physiopathology and for testing the effects of beta-AR ligands on liver metabolism.  相似文献   

8.
The activities of phosphoenolpyruvate carboxykinase, ;malic enzyme', citrate-cleavage enzyme and glucose 6-phosphate dehydrogenase were assayed in homogenates of rumen mucosa, liver and adipose tissue of cattle. Rumen mucosa cytoplasm contained activities of ;malic enzyme' approximately sevenfold those of phosphoenolpyruvate carboxykinase, suggesting that the conversion of propionate into lactate by rumen mucosa involves ;malic enzyme'. Neither starvation for 8 days nor feeding with a concentrate diet for at least 3 months before slaughter produced enzyme patterns in the tissues different from those in cattle given only hay, except that the all-concentrate diet caused increased activities of glucose 6-phosphate dehydrogenase and ;malic enzyme' in adipose tissues. Rumen mucosa, liver and adipose tissue contained phosphoenolpyruvate carboxykinase activity. ;Malic enzyme' was absent in liver. Citrate-cleavage enzyme activity was present in liver and adipose tissue but was quite low in rumen mucosa. Liver contained much less glucose 6-phosphate dehydrogenase activity than rumen mucosa or adipose tissue.  相似文献   

9.
Consumption of large amounts of fructose or sucrose increases lipogenesis and circulating triglycerides in humans. Although the underlying molecular mechanisms responsible for this effect are not completely understood, it is possible that as reported for rodents, high fructose exposure increases expression of the lipogenic enzymes fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC-1) in human liver. Since activation of the hexosamine biosynthesis pathway (HBP) is associated with increases in the expression of FAS and ACC-1, it raises the possibility that HBP-related metabolites would contribute to any increase in hepatic expression of these enzymes following fructose exposure. Thus, we compared lipogenic gene expression in human-derived HepG2 cells after incubation in culture medium containing glucose alone or glucose plus 5 mM fructose, using the HBP precursor 10 mM glucosamine (GlcN) as a positive control. Cellular metabolite profiling was conducted to analyze differences between glucose and fructose metabolism. Despite evidence for the active uptake and metabolism of fructose by HepG2 cells, expression of FAS or ACC-1 did not increase in these cells compared with those incubated with glucose alone. Levels of UDP-N-acetylglucosamine (UDP-GlcNAc), the end-product of the HBP, did not differ significantly between the glucose and fructose conditions. Exposure to 10 mM GlcN for 10 minutes to 24 hours resulted in 8-fold elevated levels of intracellular UDP-GlcNAc (P<0.001), as well as a 74-126% increase in FAS (P<0.05) and 49-95% increase in ACC-1 (P<0.01) expression above controls. It is concluded that in HepG2 liver cells cultured under standard conditions, sustained exposure to fructose does not result in an activation of the HBP or increased lipogenic gene expression. Should this scenario manifest in human liver in vivo, it would suggest that high fructose consumption promotes triglyceride synthesis primarily through its action to provide lipid precursor carbon and not by activating lipogenic gene expression.  相似文献   

10.
11.
12.
Hepatic genes crucial for carbohydrate and lipid homeostasis are regulated by insulin and glucose metabolism. However, the relative contributions of insulin and glucose to the regulation of metabolic gene expression are poorly defined in vivo. To address this issue, adenovirus-mediated hepatic overexpression of glucokinase was used to determine the effects of increased hepatic glucose metabolism on gene expression in fasted or ad libitum fed rats. In the fasted state, a 3 fold glucokinase overexpression was sufficient to mimic feeding-induced increases in pyruvate kinase and acetyl CoA carboxylase mRNA levels, demonstrating a primary role for glucose metabolism in the regulation of these genes in vivo. Conversely, glucokinase overexpression was unable to mimic feeding-induced alterations of fatty acid synthase, glucose-6-phosphate dehydrogenase, carnitine palmitoyl transferase I or PEPCK mRNAs, indicating insulin as the primary regulator of these genes. Interestingly, glucose-6-phosphatase mRNA was increased by glucokinase overexpression in both the fasted and fed states, providing evidence, under these conditions, for the dominance of glucose over insulin signaling for this gene in vivo. Importantly, glucokinase overexpression did not alter sterol regulatory element binding protein 1-c mRNA levels in vivo and glucose signaling did not alter the expression of this gene in primary hepatocytes. We conclude that a modest hepatic overexpression of glucokinase is sufficient to alter expression of metabolic genes without changing the expression of SREBP-1c.  相似文献   

13.
14.
The level of fructose 2,6-bisphosphate and the maximal activities of key gluconeogenic and glycolytic enzymes were determined in the liver of a rat model of chronic uremia and in ad libitum-fed control and pair-fed control animals. Fructose 2,6-bisphosphate was decreased in uremia and its level negatively correlated with the concentration of blood urea nitrogen. The changes in gluconeogenic enzymes in uremic rats were not different from those in the pair-fed controls. However, pyruvate kinase was decreased in uremia when compared to both controls. These studies offer a possible mechanism for the role of the liver in the carbohydrate intolerance of uremia.  相似文献   

15.
16.
17.
18.
Although mutations in the gamma-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the gamma1-subunit of AMPK, we investigated the effects of expression of an AMPK-activating gamma1-subunit mutant (gamma1 R70Q) on regulatory pathways controlling glycogen accumulation and cardiac hypertrophy in neonatal rat cardiac myocytes. Whereas expression of gamma1 R70Q displayed the expected increase in palmitate oxidation rates, rates of glycolysis were significantly depressed. In addition, glycogen synthase activity was increased in cardiac myocytes expressing gamma1 R70Q, due to both increased expression and decreased phosphorylation of glycogen synthase. The inhibition of glycolysis and increased glycogen synthase activity were correlated with elevated glycogen levels in gamma1 R70Q-expressing myocytes. In association with the reduced phosphorylation of glycogen synthase, glycogen synthase kinase (GSK)-3beta protein and mRNA levels were profoundly decreased in the gamma1 R70Q-expressing myocytes. Consistent with GSK-3beta negatively regulating hypertrophy via inhibition of nuclear factor of activated T cells (NFAT), the dramatic downregulation of GSK-3beta was associated with increased nuclear activity of NFAT. Together, these data provide important new information about the mechanisms by which a mutation in the gamma-subunit of AMPK causes altered AMPK signaling and identify multiple pathways involved in regulating both cardiac myocyte metabolism and growth that may contribute to the development of the gamma mutant-associated cardiomyopathy.  相似文献   

19.
Glucose homeostasis in mammals is achieved by the actions of counterregulatory hormones, namely insulin, glucagon and glucocorticoids. Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose when it is scarce in the blood. This process is catalysed by two rate-limiting enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) whose gene expression is regulated by hormones. Hormone response units (HRUs) present in the two genes integrate signals from various signalling pathways triggered by hormones. How such domains are arranged in the regulatory region of these two genes, how this complex regulation is accomplished and the latest advancements in the field are discussed in this review.  相似文献   

20.
Trigonella foenum graecum (fenugreek) seed powder has been suggested to have potential antidiabetic effects. The effect of oral administration of Trigonella whole seed powder (5% in the diet) for 21 days on glycolytic, gluconeogenic and NADPlinked lipogenic enzymes were studied in liver and kidney tissues of alloxan-induced diabetic Wistar rats. Diabetic rats were characterised by a 4fold higher blood glucose level and a 0.7fold lower body weight compared to normal controls. The activities of the glycolytic enzymes were significantly lower in the diabetic liver and higher in the diabetic kidney. The activities of gluconeogenic enzymes were higher in both liver and kidney during diabetes, however the activities of the lipogenic enzymes were decreased in both tissues during diabetes. Trigonella seed powder treatment to diabetic rats for 21 days brought down the elevated fasting blood glucose levels to control levels. The altered enzyme activities were significantly restored to control values in both the liver and kidney after Trigonella seed powder treatment. The therapeutic role of Trigonella seed powder in type1 diabetes as exemplified in this study can be attributed to the change of glucose and lipid metabolising enzyme activities to normal values, thus stabilizing glucose homeostasis in the liver and kidney. These biochemical effects exerted by Trigonella seeds make it a possible new therapeutic in type1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号