首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Most developing organs are surrounded by an extracellular matrix (ECM), which must be remodeled to accommodate growth and morphogenesis. In C. elegans, the GON-1 ADAMTS metalloprotease regulates both elongation and shape of the developing gonad . Here, we report that either human ADAMTS-4 or ADAMTS-9 can substitute for GON-1 in transgenic worms, suggesting functional conservation between human and nematode homologs. We further identify fibulin (FBL-1), a widely conserved ECM component , as critical for gonadal morphogenesis. FBL-1 is expressed in nongonadal tissues but is present at the surface of the elongating gonad. A fibulin deletion mutant has a wider than normal gonad as well as body size defects. We find that GON-1 and fibulin have antagonistic roles in controlling gonadal shape. Depletion of fbl-1, but not other ECM components, rescues gon-1 elongation defects, and removal of gon-1 rescues fbl-1 width defects. Therefore, the GON-1 protease normally promotes tissue elongation and expansion, whereas the fibulin ECM protein blocks these key morphogenetic processes. We suggest that control of organ shape by GON-1 and fibulin in C. elegans may provide a model for similar cellular processes, including vasculogenesis, in humans.  相似文献   

4.
5.
6.
  相似文献   

7.
8.
Retinal detachment is the physical separation of the retina from the retinal pigment epithelium. It occurs during aging, trauma, or during a variety of retinal disorders such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, or as a complication following cataract surgery. This report investigates the role of fibulin 2, an extracellular component, in retinal detachment. A major mechanism for detachment resolution is enhancement of cellular adhesion between the retina and the retinal pigment epithelium and prevention of its cellular migration. This report shows that fibulin 2 is mainly present in the retinal pigment epithelium, Bruch membrane, choriocapillary, and to a lesser degree in the retina. In vitro studies revealed the presence of two isoforms for fibulin 2. The small isoform is located inside the cell, and the large isoform is present inside and outside the cells. Furthermore, fibulin 2 is post-translationally modified by tyrosine sulfation, and the sulfated isoform is present outside the cell, whereas the unsulfated pool is internally located. Interestingly, sulfated fibulin 2 significantly reduced the rate of cellular growth and migration. Finally, levels of fibulin 2 dramatically increased in the retinal pigment epithelium following retinal detachment, suggesting a direct role for fibulin 2 in the re-attachment of the retina to the retinal pigment epithelium. Understanding the role of fibulin 2 in enhancing retinal attachment is likely to help improve the current therapies or allow the development of new strategies for the treatment of this sight-threatening condition.  相似文献   

9.
Angiogenin is an angiogenic factor involved in tumorigenesis. However, the mechanism of angiogenin's action remains elusive. In the present study, we identified fibulin 1, an extracellular matrix and plasma glycoprotein, as an angiogenin-interacting molecule by yeast two-hybrid screening. This interaction was further confirmed by two different approaches. First, fibulin 1 was co-immunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody in vitro , suggesting angiogenin binds with fibulin 1 directly. Then fluorescence resonance energy transfer analysis showed that fibulin 1 interacted with angiogenin in COS-7 cells, showing that the binding could occur in a cellular context. As fibulin 1 plays an important role in cell proliferation, migration, adhesion, and stabilizes new-forming blood vessel wall, the interaction between fibulin 1 and angiogenin might underline one possible mechanism of angiogenin in angiogenesis and/or tumorigenesis.  相似文献   

10.
p38 MAPKs regulate migration and invasion. However, the mechanisms involved are only partially known. We had previously identified fibulin 3, which plays a role in migration, invasion, and tumorigenesis, as a gene regulated by p38α. We have characterized in detail how p38 MAPK regulates fibulin 3 expression and its role. We describe here for the first time that p38α, p38γ, and p38δ down-regulate fibulin 3 expression. p38α has a stronger effect, and it does so through hypermethylation of CpG sites in the regulatory sequences of the gene. This would be mediated by the DNA methylase, DNMT3A, which is down-regulated in cells lacking p38α, but once re-introduced represses Fibulin 3 expression. p38α through HuR stabilizes dnmt3a mRNA leading to an increase in DNMT3A protein levels. Moreover, by knocking-down fibulin 3, we have found that Fibulin 3 inhibits migration and invasion in MEFs by mechanisms involving p38α/β inhibition. Hence, p38α pro-migratory/invasive effect might be, at least in part, mediated by fibulin 3 down-regulation in MEFs. In contrast, in HCT116 cells, Fibulin 3 promotes migration and invasion through a mechanism dependent on p38α and/or p38β activation. Furthermore, Fibulin 3 promotes in vitro and in vivo tumor growth of HCT116 cells through a mechanism dependent on p38α, which surprisingly acts as a potent inducer of tumor growth. At the same time, p38α limits fibulin 3 expression, which might represent a negative feed-back loop.  相似文献   

11.
12.
13.
14.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

15.
16.
Fibulin is a 100-kDa calcium-binding, extracellular matrix (ECM), and plasma glycoprotein (Argraves et al., Cell 58, pp. 623-629, 1989; Argraves et al., J. Cell Biol. 111, 3155-3164). Immunoprecipitation analysis showed that antibodies against human fibulin react with an avian isoform (M(r) 100,000). The spatial and temporal distribution of fibulin was examined in the early avian embryo using immunofluorescence microscopy. In stage 15-22 quail embryos fibulin is a constituent of most basement membranes. Areas undergoing epithelial-mesenchymal transitions such as the endocardial cushions, developing myotomes, and neural crest display especially prominent immunostaining. In the early heart fibulin expression was most pronounced in the cardiac jelly at sites where endocardial cushion cells begin the migrations that lead to the formation of valvular and septal primordia. Laser scanning confocal microscopy showed extensive extracellular accumulations of fibulin on the surface of endocardial mesenchyme cells that were motile at the time of fixation (stage 19). These data suggest that enhanced deposition of fibulin at sites of epithelial-mesenchymal transitions may influence cell behavior.  相似文献   

17.
18.
The pathological mechanism underlying glaucoma has always been a complex aspect of this permanently blinding disease but proteomic studies have been helpful in elucidating it to a great extent in several studies. This study was designed to evaluate the expression and to get an idea about the function of two novel markers (ligatin and fibulin‐7) identified in human aqueous humor (hAH) in relation to glaucomatous progression. A significant increase in the protein content of glaucomatous hAH compared to that of non‐glaucomatous controls (NG‐Ctrls) was observed. Ligatin, fibulin‐7, and its proteolysis were revealed in hAH of primary open angle glaucoma (POAG), primary angle closure glaucoma (PACG) and NG‐Ctrls. Quantification confirmed no significant difference in expression of ligatin, whereas fibulin‐7 was significantly (P < 0.05) low in hAH of PACG in comparison to NG‐Ctrls and POAG. Importantly the immunohistochemical assay for both indicated their possible involvement in the maintenance of the appropriate structure of TM in vivo. Since oxidative stress is a major contributor to glaucomatous pathogenesis, in vitro analysis of nuclear and cytoplasmic fractions indicated intracellular changes in localization and expression of ligatin upon oxidative insult of human trabecular meshwork (TM) cells. While no such changes were found for fibulin‐7 expression. This was also corroborated with the immunocytochemical assay. Though a study with a small sample size, this is the first report which confirms the presence of ligatin and fibulin‐7 in hAH, quantified their differential expression, and indicated the possibility of their involvement in the maintenance of the TM structure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号