首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

2.
The effect of 13 hallucinogens on the uptake of serotonin and norepinephrine into hippocampal synaptosomes and of serotonin and dopamine into caudate synaptosomes was found to be inhibitory, except for lysergic acid diethylamide and 2-bromolysergic acid diethylamide, which were inactive. The indoleal-kylamines were generally more potent than the phenylethylamines. The reported inhibition of uptake of serotonin by 5-methoxy-N,N-dimethyltryptamine and lysergic acid diethylamide into whole brain synaptosomes was not reproducible at concentrations 102 to 104 times higher than those stated in the literature.  相似文献   

3.
A synthetic dipeptide, N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide, was shown previously to inhibit the binding of serotonin to a soluble specific serotonin binding protein as well as to alter brain serotonin levels. When injected into rats intraventricularly, the dipeptide caused an increase in pain threshold, lasting for several hours, as determined by either a flinch-jump test or a tail-flick test. This effect was reversed by naloxone. The dipeptide is a very weak inhibitor of the binding of labelled naloxone or dihydromorphine to a membranous opiate receptor preparation. The analgesic activity of the dipeptide was not diminished by p-chlorophenylalanine or the setonergic neurotoxin 5,7-dihydroxytryptamine, which depleted brain serotonin levels. This implies that the analgesic action of the dipeptide is not mediated directly by its effect on serotonin concentration.  相似文献   

4.
We previously observed that the neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) binds with high- and low-affinity interactions to an actin-like protein prepared from rat brain synaptosomes. In this study, we examined its binding to highly purified actin obtained from rabbit skeletal muscle. Monomeric G-actin bound serotonin with high and low affinities, exhibiting equilibrium dissociation constants (KD values) of 5 X 10(-5) M and 4 X 10(-3) M, respectively. The serotonin binding site on actin was distinct from those sites previously characterized for divalent cations, nucleotides, and cytochalasin alkaloids. The binding of serotonin (1 microM) to G-actin was increased as much as 26-fold by divalent cations. Potassium iodine (KI) increased the affinity of G-actin for serotonin, KD values for this binding being 3 X 10(-7) M and X 10(-5) M. Serotonin bound with even higher affinity to polymerized F-actin, with KD values of 2 X 10(-8) M and 2 X 10(-5) M. However, the total number of binding sites on F-actin was only about 4% of the number of G-actin. The binding of serotonin (0.1 microM) to G-actin could be inhibited by phenothiazines (1 microM) or reserpine (10 microM), but not by classical antagonists of serotonin receptors or by drugs that release serotonin or inhibit its uptake. The binding of serotonin to actin in vivo may participate in a contractile process related to neurotransmitter release.  相似文献   

5.
The sodium dependence of binding of [3H]-paroxetine, a selective serotonin uptake inhibitor, to the serotonin transporter in rat diencephalon was studied in both brain membranes and tissue sections and compared with that of 5-[3H]hydroxytryptamine ([3H]5-HT) uptake by synaptosomes from the same region. Binding of [3H]-paroxetine in both the membranes and sections displayed clear sodium dependence until a plateau occurring at 60 nM NaCl, the EC50 for sodium being 8 and 25 mM, respectively. The affinity (1/KD) of [3H]paroxetine binding was a simple hyperbolic function of sodium concentration. In contrast, the density of [3H]paroxetine sites was not affected by external Na+ concentration. The uptake of [3H]5-HT showed a similar pattern of sodium dependence with an EC50 for Na+ of 25 mM. Both the affinity (1/Km) and the rate (Vmax) of [3H]5-HT uptake were dependent on external [Na+] with sodium-dependence curves fitting a rectangular hyperbola. The kinetic analysis of results indicates that one sodium ion is required for the binding of [3H]paroxetine as well as for the binding and translocation of each [3H]5-HT molecule. The results concur with a single-site model of the sodium-dependent serotonin transporter with common or overlapping domains for 5-HT and 5-HT uptake inhibitors.  相似文献   

6.
Calcium uptake by mitochondria and fragmented sarcoplasmic reticulum (FSR) isolated from frog skeletal muscle was studied. These fractions were characterized by electron microscopy, succinic dehydrogenase assay and by using mitochondrial inhibitors. With high (100 μM) Ca in the medium, the Ca accumulating capacity of the two fractions was similar. Zinc in concentrations of 5–10 μM in the medium had no effect on Ca uptake by either fraction whereas higher concentration of Zn (25 μM) reduced Ca uptake in both fractions. Five micromolar lanthanum lowered Ca uptake by 70% in mitochondria but had no effect on Ca uptake by FSR. With 10 and 25 μM La, Ca uptake by FSR decreased by 12 and 20% respectively. Addition of La (5 μM) to Ca-loaded mitochondria had no effect indicating that La could only interfere with the Ca binding step and was unable to release Ca that was already stored. In the medium that originally contained low (10 μM) Ca FSR was able to reduce the Ca concentration below 0.1 μM. In contrast mitochondria, although possessing an equal capacity for Ca uptake were unable to accumulate Ca from the medium when Ca was lowered to approximately 4 μM. Presence of 5–10 μM La in the low Ca medium had no effect on the total amount of Ca taken up by FSR in two minutes but reduced the rate of Ca uptake significantly. The relation of the effects of Zn and La on the isolated fractions to their reported effects on the contractile response of skeletal muscle is discussed.  相似文献   

7.
This study used 3H-L-alanyl-L-alanine to demonstrate dipeptide uptake using in vitro gut sacs prepared from the hindgut of the Pacific hagfish Eptatretus stoutii. Concentration-dependent kinetic analysis resulted in a sigmoidal distribution with a maximal (± SE) uptake rate (Jmax-like) of 70 ± 3 nmol cm−2 h−1 and an affinity constant (Km-like) of 1072 ± 81 μM. Addition of high alanine concentrations to transport assays did not change dipeptide transport rates, indicating that hydrolysis of the dipeptide in mucosal solutions and subsequent uptake via apical amino acid transporters was not occurring, which was further supported by a Km distinct from that of amino acid transport. Transport occurred independent of mucosal pH, but uptake was reduced by 42% in low mucosal sodium. This may implicate cooperation between peptide transporters and sodium-proton exchangers, previously demonstrated in several mammalian and teleost species. Finally, apical L-alanyl-L-alanine uptake rates (i.e., mucosal disappearance) were significantly increased following a meal, demonstrating regulation of uptake. Overall, this examination of dipeptide acquisition in the earliest extant Agnathan suggests evolutionarily conserved mechanisms of transport between hagfish and later-diverging vertebrates such as teleosts and mammals.  相似文献   

8.
Groups of neurons intrinsic to the mammalian myenteric plexus have been shown to have both tryptophan hydroxylase and a specific uptake mechanism for serotonin. They are probably serotonergic. A soluble protein with a high binding affinity for serotonin, similar to a protein previously found in rat brain by TAMIR & HUANG (1974), has now been found in the myenteric plexus of both rabbit and guinea pig. Partial purification of the protein from the rabbit's myenteric plexus by ammonium sulfate fractionation increased the ratio of specific to nonspecific serotonin binding almost 3-fold. Two dissociation constants for serotonin binding were obtained by equilibrium dialysis: 6.7 × 10?10 M and 4.8 × 10?7 M. The protein was similar to the soluble serotonin-binding protein of CNS: the indole derivatives 5, 6- and 5, 7-dihydroxytryptamine, and 6-hydroxytryptamine inhibited serotonin binding by 50% at 10?7 M; norepinephrine was a poor inhibitor of serotonin binding; most of the serotonin-protein complex had a very high molecular weight and did not penetrate a 6.5% acrylamide gel. The appearance of the serotonin binding protein during development of the intestine in fetal rabbit correlates closely with the development of a serotonin uptake mechanism by nerves of this tissue and precedes the ingrowth of the adrenergic innervation. In-vitro administration of 6-hydroxydopamine to adult animals has no effect on the binding capacity for serotonin. Binding activity in denervated preparations is only 1/5 that of innervated tissue. It is concluded that the serotonin-binding protein, which has been found associated with serotonergic pathways in the CNS, is found associated with serotonergic neurons in the periphery as well. Since a similar serotonin-binding protein is also found in sheep thyroid, which stores but does not take up serotonin, the protein may be a component of the serotonin storage mechanism.  相似文献   

9.
EFFECT OF γ-AMINOBUTYRIC ACID ON BRAIN SEROTONIN AND CATECHOLAMINES   总被引:1,自引:0,他引:1  
—Intraperitoneal injections of GABA (5 mg/kg) to rats lowered the level of norepinephrine in brain, heart and spleen but not suprarenals and raised that of serotonin in brain. Changes of these monoamines were most pronounced in the hypothalamic region after 20min. A reduction of hypothalamic norepinephrine was also observed 15min following the intracarotid administration of 0·5 mg/kg of GABA. In these experiments there was a concomitant increase in the level of free GABA in the anterior portion of the ventral hypothalamus. Brain dopamine level and 5-hydroxytryptophan decarboxylase, dihydroxyphenylalanine decarboxylase and monoamine oxidase activities were not affected. The 20 per cent increase of endogenous GABA observed in the midbrain 30 min following the administration of amino-oxyacetic acid was accompanied by a sharp fall in norepinephrine level (39 per cent) and an increase in serotonin (20 per cent). In in vitro studies 10–300 μg/ml of GABA were shown to release norepinephrine from cortical and hypothalamic slices, and to inhibit serotonin release without affecting 5-hydroxytryptophan uptake and to have no effect on the release of dopamine from slices of the region of the corpus striatum nor on the activity of the enzymes mentioned. Subcellular studies showed that the particulate:supernatant ratio for norepinephrine was reduced from a control value of 2·04 to 1·75 and that of serotonin was raised from 2·8 to 3·5. Following pretreatment with iproniazid, GABA reduced the raised level of brain norepinephrine to a greater extent than reserpine but not as intensively as amphetamine. The results obtained suggest that these monoamines may be involved in the mechanisms underlying the action of GABA in brain and that the effect of GABA on brain monoamines may be of certain significance in synaptic events.  相似文献   

10.
The role of the serotonin (5-hydroxytryptamine) autoreceptor in the regulation of the activity of tryptophan hydroxylase was investigated in rat raphe slices. The activity of tryptophan hydroxylase was estimated by measuring the accumulation of 5-hydroxytryptophan in the presence of inhibition of aromatic L-amino acid decarboxylase using 3-hydroxy-4-bromobenzyloxy-amine by HPLC with fluorescence detection. Serotonin and its agonists N,N-dimethyl-5-methoxytryptamine and 1-(m-chlorophenyl)-piperazine reduced the formation of 5-hydroxytryptophan to 50-60% at 10(-5) M. The effect of serotonin was reversed by 10(-5) M methiothepin, an antagonist of the serotonin autoreceptor. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), dose-dependently reduced the basal formation of 5-hydroxytryptophan to 40-50% at 10(-6) and 10(-4) M, respectively. W-7 also reduced the activated formation by A-23187 or dibutyryl cyclic AMP in a dose-dependent manner. W-7 had no effect on 5-hydroxytryptophan formation reduced by serotonin at 10(-5) M. These results suggest that the role of the serotonin autoreceptor was related to the prevention of the calcium-calmodulin-dependent activation of tryptophan hydroxylase.  相似文献   

11.
Advanced glycation end products (AGEs), comprising a highly diverse class of Maillard reaction compounds formed in vivo and during heating processes of foods, have been described in the progression of several degenerative conditions such as Alzheimer's disease and diabetes mellitus. N?‐Carboxymethyllysine (CML) represents a well‐characterized AGE, which is frequently encountered in a Western diet and is known to mediate its cellular effects through binding to the receptor for AGEs (RAGE). As very little is known about the impact of exogenous CML and its precursor, glyoxal, on intestinal cells, a genome‐wide screening using a customized microarray was conducted in fully differentiated Caco‐2 cells. After verification of gene regulation by qPCR, functional assays on fatty acid uptake, glucose uptake, and serotonin release were performed. While only treatment with glyoxal showed a slight impact on fatty acid uptake (P < 0.05), both compounds reduced glucose uptake significantly, leading to values of 81.3% ± 22.8% (500 μM CML, control set to 100%) and 68.3% ± 20.9% (0.3 μM glyoxal). Treatment with 500 μM CML or 0.3 μM glyoxal increased serotonin release (P < 0.05) to 236% ± 111% and 264% ± 66%, respectively. Co‐incubation with the RAGE antagonist FPS‐ZM1 reduced CML‐induced serotonin release by 34%, suggesting a RAGE‐mediated mechanism. Similarly, co‐incubation with the SGLT‐1 inhibitor phloridzin attenuated serotonin release after CML treatment by 32%, hinting at a connection between CML‐stimulated serotonin release and glucose uptake. Future studies need to elucidate whether the CML/glyoxal‐induced serotonin release in enterocytes might stimulate serotonin‐mediated intestinal motility.
  相似文献   

12.
CHOLINE: SELECTIVE ACCUMULATION BY CENTRAL CHOLINERGIC NEURONS   总被引:20,自引:8,他引:12  
Abstract— Most of the cholinergic input to the hippocampus was destroyed by placement of lesions in the medial septal area. In animals with such lesions we found that hippocampal ChAc activity was reduced by 85–90% and endogenous acetylcholine levels were reduced by more than 80 %. When hippocampal synaptosomes from animals with lesions were incubated with [3H]choline at concentrations of 7.5 nm, 1 μm and 10 μm there was approximately a 60 % reduction in the uptake of [3H]choline, suggesting that cholinergic nerve endings were mainly responsible for [3H]choline uptake. At 0.1 mm concentrations of [3H]choline, there was only a 25 % reduction of choline uptake, suggesting that at higher concentrations of choline there was more nonspecific uptake. The uptake of radiolabelled tryptophan, glutamate and GABA were only slightly or not at all affected by the lesions. There was a significant reduction of uptake of radiolabelled serotonin and norepinephrine, since known monoaminergic tracts were disrupted. Choline uptake was reduced only in brain regions in which cholinergic input was interrupted (i.e. the cerebral cortex and hippocampus) and remained unchanged in other regions (i.e. the cerebellum and striatum). The time course of the reduction in choline uptake was similar to that of the reductions in ChAc activity and endogenous ACh levels; there was no decrease at 1 day, a significant decrease at 2 days, and the maximal decrease at 4 days postlesion. There was a close correlation among choline uptake, ChAc activity and ACh levels in the four brain regions examined (i.e. the striatum, cerebral cortex, hippocampus and cerebellum). Our results suggest that when hippocampal synaptosomes (and perhaps synaptosomes from other brain areas as well) are incubated in the presence of choline, at concentrations of 10 μm m or lower, then cholinergic nerve endings are responsible for the bulk of the choline accumulated by the tissue.  相似文献   

13.
The influence of isoflurane on the synaptic activity of 5-hydroxytryptamine   总被引:1,自引:0,他引:1  
The effects of isoflurane on uptake of 5-hydroxytryptamine(serotonin; 5-HT) by rat brain synaptosomes and binding of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and ketanserin to 5-HT1A and 5-HT2 receptors were examined. Isoflurane caused a concentration-dependent decrease in synaptosomal 5-HT uptake that was kinetically defined as non-competitive; exposure to isoflurane decreased Vmax but had no effect on the apparent Km. Removal of the drug from the reaction mixture resulted in the return of 5-HT accumulation rates to control levels. Isoflurane inhibited 8-OH-DPAT binding to hippocampal membranes by up to 27±6% at 4.5 mM, but did not significantly affect ketanserin binding to 5-HT2 receptors. These findings suggest that presynaptic actions are more important than postsynaptic actions in the modulation of serotonergic neutrotransmission by isoflurane.  相似文献   

14.
Blood-brain barrier (BBB) transport of choline and certain choline analogs was studied in adult and suckling rats, and additionally compared in the paleocortex and neocortex of adult rats. Saturable uptake was characterized by a single kinetic system in all cases examined, and in adult rat forebrains we determined a Km= 442 ± 60 μM and Vmax= 10.0 ± 0.6 nmol min-1 g-1. In 14–15-day-old suckling forebrains a similar Km (= 404 ± 88 μM) but higher Vmax (= 12.5 ± 1.5 nmol min-1 g-1) was determined. When choline uptake was compared in two regions of the forebrain, similar Michaelis-Menten constants were determined but a higher uptake velocity was found in the neocortex (i.e. neocortex Km= 310 ± 103 μM and Vmax= 12.6 ± 2.8 nmol min-1g-1; paleocortex Km= 217 ± 76 μM and Vmax= 7.2 ± 1.5 nmol min-1 g-1). Administration of radiolabelled choline at low (5 μM) and high (100 μM) concentrations, followed by microwave fixation 60 s later and chloroform-methanol-water separations of the homogenized brain did not suggest a relationship between concentration and the appearance of label in lipid or aqueous fractions as observed in another in-vitro study elaborating two-component kinetics of choline uptake. It was observed that 60s after carotid injection 12–14% of the radiolabel in the ipsilateral cortex was found in the chloroform-soluble fraction. Hemicholinium-3 (Ki= 111 μM), dimethylaminoethanol (Ki= 42 μM), tetraethyl ammonium chloride, tetramethyl ammonium chloride, 2-hydroxyethyl triethylammonium iodide, carnitine, normal rat serum, and to a lesser extent lithium and spermidine all inhibited choline uptake in the BBB. Unsubstituted ammonium chloride and imipramine did not inhibit choline uptake. No difference was observed in blood-brain barrier choline uptake of unanesthetised, carotid artery-catheterized animals, and comparable sodium pentobarbital-anesthetized controls.  相似文献   

15.
Effects of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (N-methyl-PTP) and its N-propyl congener (N-propyl-PTP) on the high-affinity uptake of tritiated dopamine (DA), norepinephrine, and serotonin by striatal or cerebral cortical synaptosomes were evaluated in several species (rat, guinea pig, rabbit, calf, and man). Both compounds inhibited uptake of 0.1 ωM labeled amines at IC50s of 5–10 ωM. Effects of N-methyl-PTP were competitive, reversible, somewhat more potent, and more selective for serotonin than were actions of N-propyl-PTP. Similar effects were found in all species. Neither agent inhibited binding of 3H-labeled spiperone or ADTN to DA receptor sites. 3H-N-methyl-PTP did not appear to be taken up selectively into DA neurons. N-methyl-PTP was highly toxic to the rat in doses that did not alter the metabolism of DA or serotonin in brain. These results, overall, do not provide strong support for the hypothesis that reported neurotoxic actions of N-methyl-PTP are mediated by neuron-specific local transport and intracellular accumulation, or account for species differences in the actions of this toxin, but do suggest interactions with brain monoamine neurons. The actions of the neurotoxic effects of N-methyl-PTP remain unclear.  相似文献   

16.
D T Chou  H Cuzzone  K R Hirsh 《Life sciences》1983,33(12):1149-1156
We have previously reported that caffeine significantly enhanced 5-HT uptake and reduced 5-HT release from crude synaptosomal fractions obtained from rat cerebral cortex and from midbrain raphe region. Blood platelets, as reported by many laboratories and also demonstrated in our own labs, have a very active mechanism for 5-HT uptake and storage. In this regard platelets bear a high degree of similarity to brain serotonin neurons. The present experiments were, therefore, carried out to investigate the effects of caffeine on 5-HT uptake and release from rat platelets in an attempt to assess the possibility of using platelets as a model for studying the CNS effects of caffeine. Platelet rich plasma was prepared from the trunk blood of decapitated rats. Effects of caffeine were investigated at 10(-7), 10(-6), 10(-5) and 10(-4)M, on both the high affinity 3H-5-HT uptake and the spontaneous 5-HT release from 3H-5-HT preloaded platelets. The results show that caffeine did not change 5-HT uptake into platelets. In brain synaptosomes the same concentration of caffeine, however, increased 5-HT uptake dose-dependently. The results also revealed that caffeine increased 5-HT release from rat platelets in a concentration-dependent manner. The concentrations 10(-6), 10(-5), and 10(-4)M increased release significantly compared to control. This finding is also in contrast to that observed in synaptosomes of brain serotonin neurons where caffeine decreased 5-HT release. It is concluded, therefore, that the rat blood platelet is not a suitable model for studying these CNS actions of caffeine. Furthermore, our observations imply that rat platelet serotonin uptake and release mechanisms are not identical to those mechanisms in brain serotonin neurons.  相似文献   

17.
Abstract: This paper describes the effect of four organophosphorus insecticides: Dipterex, DDVP, Ronnel and its oxygen analogue on the respiration of rat brain synaptosomes. Dipterex and DDVP in the concentrations used, 5, 50, or 500 μM, did not change the rate of oxygen uptake and oxidative phosphorylation in rat brain synaptosomes. Ronnel in the highest concentration (500 μM) inhibited respiration in state 3 conditions and abolished respiratory control by ADP. This inhibition was correlated with a change of cytochrome c oxidase activity. The oxygen analogue of Ronnel (OAR) in micromolar concentrations (50 μM) increased the rate of respiration of synaptosomes utilizing glutamate plus malate as substrate. Higher concentrations of OAR produced inhibition of respiration, cytochrome c oxidase and NADH: cytochrome c reductase activities. These observations are typical for uncouplers of oxidative phosphorylation. Noteworthy is the fact that the uncoupling activity of OAR was observed at concentrations which did not inhibit acetylcholinesterase activity. These findings seem to suggest that disturbances in oxidative processes could play an important role in the toxicity of organophosphorus insecticides. The relation between chemical structure and the ability of insecticides to affect oxidative phosphorylation is discussed.  相似文献   

18.
SOME PROBLEMS INHERENT IN TRANSPORT STUDIES IN SYNAPTOSOMES   总被引:6,自引:6,他引:0  
A technique utilizing a 30-place manifold has been developed to study synaptosomal transport; some problems associated with such studies have been identified and clarified. The time course of L-glutamic acid uptake has been used to test variations in experimental protocol. Synaptosomes apparently become increasingly labile with increased time of incubation. This is indicated by a drop in the curve of uptake vs time after 8–12 min. Ninety seven to 98% of the glutamate taken up from a 10?6m solution is released by osmotic shock. Synaptosomes can be stored in 0.32 m ice-cold sucrose suspension for periods up to 50 min without decline in measured uptake. Storage for 3 h or more results in a very substantial decline in measured uptake. Neither the decline in measured uptake with time, nor the decline with storage, is prevented by increasing the osmolarity of the solutions used or by use of synaptosomes from the initial 1085 g supemate rather than after sedimentation and resuspension. Although prewarming synaptosomes at 30°C for 20 min prior to their use lessened or eliminated the decline following peak uptake, the difference between stored and non-stored synaptosomes was not improved. Uptake was also much less when synaptosomes were used from the first supernate or when warmed prior to their use. Storage of tissue prior to homogenization resulted in synaptosomes that gave minimal reductions in measured uptake. Washing synaptosomes after separation from incubation medium resulted in a variable loss of substrate radioactivity, depending on such variables as brand of filter, pore size, composition of wash solution, and temperature of wash solution. The results support the hypothesis that washing causes lysis of a portion of the synaptosomes. However, with Millipore filters (0.45 μm) and a 30°C Krebs-Henseleit wash solution, the loss caused by washing is minimized (about 15%). Measured uptake is found to depend on the type of filter used. Uptake is much greater with Millipore 0.45 pm filters than with Gelman 0.45 μm filters. Use of Nuclepore (0.4 μm) filters results in measured uptakes only about 5% of that when Millipore 0.45 μm filters are used. With Millipore filters, 0.30 μm pore size filters gave uptakes only 68% of that using 0.45 pm pore size filters.  相似文献   

19.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

20.
The accumulation of [3H]homocholine (3-trimethylamino-propan-1-01) by isolated synaptosomes prepared from rat brain was resolved kinetically into a high (KT= 3.0 μM) and a low (KT= 14.5 μM) affinity system. Although homocholine was not acetylated by solubilized choline acetyltransferase, 64% of the homocholine accumulated by intact synaptosomes via the high affinity uptake process was acetylated. Homocholine was also acetylated in the superior cervical ganglion of the cat, and the amount of acetylhomocholine formed was increased (12-fold) by preganglionic nerve stimulation. In ganglia, acetylhomocholine was available for release by preganglionic nerve impulses, and its release was Ca2+-dependent, It is concluded that homocholine can form a cholinergic false transmitter, and that the substrate specificity of choline acetyltransferase in vitro might be different from that in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号