首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

2.
Mitogen-activated protein kinases in cell-cycle control   总被引:4,自引:0,他引:4  
The mitogen-activated protein kinase (MAPK) family of kinases connects extracellular stimuli with diverse cellular responses ranging from activation or suppression of gene expression to the regulation of cell mortality, growth, and differentiation. The MAPK family has been studied extensively; however, the role of these kinases in cell growth and cell-cycle control has become increasingly complex. Patterns have begun to emerge from these studies that show the functions of MAPK subfamilies at different stages of the cell cycle. Their patterns of subcellular localization and movement during the cell cycle are subfamily-specific and have raised many questions about possible cell-cycle functions that have yet to be demonstrated. This article will compare and contrast our current understanding of the functions and localization patterns of the MAPK subfamilies (ERK, BMK, p38, and JNK) in cell-cycle control.  相似文献   

3.
p38 MAPK在小鼠睾丸不同发育阶段的表达和定位   总被引:1,自引:0,他引:1  
为探讨丝裂原活化蛋白激酶p38 MAPK在小鼠睾丸不同发育阶段的表达,应用蛋白质免疫印迹杂交技术和免疫组织化学SABC法检测1至7周龄小鼠睾丸p38 MAPK的表达、定位及发育变化,并通过图像分析技术对免疫组织化学结果进行统计学分析。免疫印迹杂交发现,p38 MAPK在2~7周龄小鼠睾丸中均有表达。免疫组织化学结果显示,在2周龄小鼠睾丸曲细精管上皮中即可观察到p38 MAPK免疫阳性反应,免疫反应阳性细胞为精原细胞;3、4、5周龄小鼠睾丸仅有个别曲细精管上皮可见p38 MAPK免疫阳性反应;6、7周龄小鼠睾丸中p38 MAPK表达较丰富,免疫反应阳性细胞为精原细胞和初级精母细胞,免疫阳性反应物均主要位于细胞核内。在7周龄小鼠睾丸中还可见到部分间质细胞的细胞质亦呈p38 MAPK阳性。这些结果提示,p38 MAPK可能对生精细胞的增殖分化具有调控作用。  相似文献   

4.
5.
Osteoblastic migration and proliferation in response to growth factors are essential for skeletal development, bone remodeling, and fracture repair, as well as pathologic processes, such as metastasis. We studied migration in response to platelet-derived growth factor (PDGF, 10 ng/ml) in a wounding model. PDGF stimulated a twofold increase in migration of osteoblastic MC3T3-E1 cells and murine calvarial osteoblasts over 24-48 h. PDGF also stimulated a tenfold increase in 3H-thymidine (3H-TdR) incorporation in MC3T3-E1 cells. Migration and DNA replication, as measured by BrdU incorporation, could be stimulated in the same cell. Blocking DNA replication with aphidicolin did not reduce the distance migrated. To examine the role of mitogen-activated protein (MAP) kinases in migration and proliferation, we used specific inhibitors of p38 MAP kinase, extracellular signal regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). For these signaling studies, proliferation was measured by carboxyfluorescein diacetate succinimidyl ester (CFSE) using flow cytometry. Inhibition of the p38 MAP kinase pathway by SB203580 and SB202190 blocked PDGF-stimulated migration but had no effect on proliferation. Inhibition of the ERK pathway by PD98059 and U0126 inhibited proliferation but did not inhibit migration. Inhibition of JNK activity by SP600125 inhibited both migration and proliferation. Hence, the stimulation of migration and proliferation by PDGF occurred by both overlapping and independent pathways. The JNK pathway was involved in both migration and proliferation, whereas the p38 pathway was predominantly involved in migration and the ERK pathway predominantly involved in proliferation.  相似文献   

6.
本研究以赤散囊菌Eurotium rubrum全基因组序列为对象,利用HMMER软件构建隐马尔可夫模型(hidden markov models,HMM)结合BLAST的方法鉴定了促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)超家族。通过构建系统发育树对鉴定蛋白进行分析,并利用MEME软件进行了保守性基序的预测及活性位点注释。分析结果表明,赤散囊菌基因组包含了4个MAPK蛋白,分别属于Hog1-type、MpkC-type、Slt2-type和Fus3/Kss1-type类型;3个MAPK kinase(MAPKK)蛋白,分别属于MKK1-type、Pbs2-type和Ste7-type类型;3个MAPK kinase kinase(MAPKKK)蛋白,分别属于BCK1-type、Ste11-type和Ssk22-type类型。保守性基序分析及注释结果表明,MAPKs超家族蛋白都包含了蛋白激酶活性位点“-D[L/I/V]K-”以及保守性的ATP-binding标签序列。MAPK与MAPKK蛋白分别包含了“-TxY-”和“-SD[I/V]WS-”磷酸化位点,且MAPK蛋白还包含一个保守性的common docking基序(CD motif),而MAPKKK蛋白则包含了一个功能不明的保守性基序,其一致性序列为“-GTPYWMAPEV-”。研究结果为揭示MAPKs信号途径在赤散囊菌中参与调控的生物学过程奠定了基础。  相似文献   

7.
Cell cycle arrest is essential for initiation of muscle differentiation in myoblasts. Given the previously described essential role for p38 MAPK in myogenesis, we undertook the present study to investigate the role of p38 MAPK in the cell cycle arrest that initiates muscle differentiation. p38 MAPK activity increased during, and was required for, muscle differentiation. Inhibition of p38 MAPK stimulated Raf and ERK activities, and induced cell proliferation in differentiation medium. The concomitant inhibition of p38 MAPK and ERK, however, failed to induce differentiation or proliferation. In conclusion, inhibition of the Raf/ERK pathway and the consequent cell cycle arrest is one of the major functions of p38 MAPK during muscle differentiation.  相似文献   

8.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in thrombus formation. We used p38α heterozygous (p38α+/?) mice and used ferric chloride (FeCl3)-induced carotid artery injury as a model of thrombus formation. The time to thrombotic occlusion induced by FeCl3 in p38α+/? mice was prolonged compared to that in wild-type (WT) mice. Platelets prepared from p38α+/? mice showed impairment of the aggregatory response to a low concentration of U46619, a thromboxane A2 analogue. Furthermore, platelets prepared from p38α+/? mice and activated by U46619 were poorly bound to fibrinogen compared with those from WT mice. Both the expression and activity of tissue factor induced by FeCl3 in WT mice were higher than those in p38α+/? mice. These results suggest that p38 plays an important role in thrombus formation by regulating platelet function and tissue factor activity.  相似文献   

9.
10.
c-Jun N-terminal kinase (JNK) activation is linked to the aberrant cell death in several neurodegenerative disorders, including Parkinson's and Alzheimer's disease. The sequence similarity among the JNK isoforms and fellow MAP kinase family member p38 has rendered the challenge of producing JNK3-specific inhibitors difficult. Using the crystal structure of JNK3 complexed with JNK inhibitors, potential compound-interacting amino acid residues were mutated to the corresponding residues in p38. The effects of these mutations on the kinetic parameters with three compounds were examined: a JNK3- (vs. p38-) selective inhibitor (SP 600125); a p38-selective inhibitor (Merck Z); and a potent combined JNK3 and p38 inhibitor (Merck Y). The data confirm the role of the JNK3 residues Ile-70 and Val-196 in both inhibitor and ATP-binding. Remarkably, the Ile-70-Val and Val-196-Ala mutations caused an increase and decrease, respectively, in the binding affinity of the p38-specific compound, Merck Z, of 10-fold. The Ile-70-Val effect may be due to the increased capacity of the active site to accommodate Merck Z, whereas the Val-196-Ala mutant may induce an unfavourable conformational change. Conservative mutations of the Asn-152 and Gln-155 residues inactivated the JNK3 enzyme, possibly interfering with protein folding in a critical hinge region of the protein.  相似文献   

11.
Hee-Jin Ahn 《FEBS letters》2009,583(17):2922-386
FGF2 has been shown to enhance proliferation and maintain differentiation potential in hMSCs during in vitro propagation. In this study, we investigated the role of mitogen-activated protein kinase in the functions of FGF2 in hMSCs. We demonstrated that FGF2 induces the transient activation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 protein kinase. SP600125 and a dominant negative JNK1 significantly reduced the FGF2-enhanced proliferation of hMSCs. Treatment with SP600125 also diminished the activity of FGF2 in the maintenance of adipogenic and osteogenic differentiation potential. These results suggest that JNK signaling is involved in the FGF2-induced stimulation of the proliferation and the maintenance of differentiation potential in hMSCs.  相似文献   

12.
The small GTPase M-Ras is highly expressed in the central nervous system and plays essential roles in neuronal differentiation. However, its other cellular and physiological functions remain to be elucidated. Here, we clarify the novel functions of M-Ras in osteogenesis. M-Ras was prominently expressed in developing mouse bones particularly in osteoblasts and hypertrophic chondrocytes. Its expression was elevated in C3H/10T1/2 (10T1/2) mesenchymal cells and in MC3T3-E1 preosteoblasts during differentiation into osteoblasts. Treatment of C2C12 skeletal muscle myoblasts with bone morphogenetic protein-2 (BMP-2) to bring about transdifferentiation into osteoblasts also induced M-Ras mRNA and protein expression. Moreover, the BMP-2 treatment activated the M-Ras protein. Stable expression of the constitutively active M-Ras(G22V) in 10T1/2 cells facilitated osteoblast differentiation. M-Ras(G22V) also induced transdifferentiation of C2C12 cells into osteoblasts. In contrast, knockdown of endogenous M-Ras by RNAi interfered with osteoblast differentiation in 10T1/2 and MC3T3-E1 cells. Osteoblast differentiation in M-Ras(G22V)-expressing C2C12 cells was inhibited by treatment with inhibitors of p38 MAP kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not by inhibitors of MAPK and ERK kinase (MEK) or phosphatidylinositol 3-kinase. These results imply that M-Ras, induced and activated by BMP-2 signaling, participates in the osteoblastic determination, differentiation, and transdifferentiation under p38 MAPK and JNK regulation.  相似文献   

13.
Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50 = 120 nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25 μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.  相似文献   

14.
Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM). In differentiating cells in differentiation medium (DM), c-Src activity gradually decreased and reached basal level 3 days after induction of differentiation. Inhibition of c-Src suppressed Raf/MEK/ERK pathway but activated p38 MAPK. Inhibition of p38 MAPK did not affect c-Src activity in PM. However, it reactivated Raf/MEK/ERK pathway in c-Src-inhibited cells regardless of PM or DM. Concomitant inhibition of c-Src and p38 MAPK activities blocked muscle differentiation in both media. In conclusion, suppression of c-Src activity stimulates muscle differentiation by activating p38 MAPK uni-directionally.  相似文献   

15.
Lee SK  Jang HJ  Lee HJ  Lee J  Jeon BH  Jun CD  Lee SK  Kim EC 《Life sciences》2006,79(15):1419-1427
Iron is essential for neoplastic cell growth, and iron chelators have been tested for potential anti-proliferative and anti-cancer effects, but the effects of iron chelators on oral cancer have not been clearly elucidated. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during iron chelator-induced apoptosis and differentiation of immortalized human oral keratinocytes (IHOK) and oral cancer cells (HN4). The iron chelator deferoxamine (DFO) exerted potent time- and dose-dependent inhibitory effects on the growth and apoptosis of IHOK and HN4 cells. DFO strongly activates p38 MAP kinase and extracellular signal-regulated kinase (ERK), but does not activate c-Jun N-terminal kinase/stress-activated protein kinase. Of the three MAP kinase blockers used, the selective p38 MAP kinase inhibitor SB203580 and ERK inhibitor PD98059 protected IHOK and HN4 cells against iron chelator-induced cell death, which indicates that the p38 and ERK MAP kinase is a major mediator of apoptosis induced by this iron chelator. Interestingly, treatment of IHOK and HN4 cells with SB203580 and PD98059 abolished cytochrome c release, as well as the activation of caspase-3 and caspase-8. DFO suppressed the expression of epithelial differentiation markers such as involucrin, CK6, and CK19, and this suppression was blocked by p38 and ERK MAP kinase inhibitors. Collectively, these data suggested that p38 and ERK MAP kinase plays an important role in iron chelator-mediated cell death and in the suppression of differentiation of oral immortalized and malignant keratinocytes, by activating a downstream apoptotic cascade that executes the cell death pathway.  相似文献   

16.
目的:观察脑内远位触液神经元内p-p38丝裂原活化蛋白激酶(MAPK)的分布及其在噪声应激时的表达。方法:用霍乱毒素亚单位B与辣根过氧化物酶复合物(CB-HRP)标记和免疫组织化学相结合的双重标记技术.观察SD大鼠脑实质内远位触液神经元中p-p38MAPK的分布:进一步制作噪声应激动物模型,观察噪声应激后该类神经元中p-p38MAPK的表达变化。结果:在脑干的特定部位恒定出现被CB-HRP标记的两组神经细胞簇,其他脑区未见CB-HRP标记神经细胞簇。不予应激刺激,该细胞簇内仅有个别神经元见有CB-HRP/p—p38MAPK;噪声应激刺激1d时,上述特定部位细胞簇的CB-HRP/p-p38MAPK双重标记神经元数目没有明显变化;噪音应激刺激5d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激10d时CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激20d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.01):结论:在脑干特定部位恒定存在的两组被CBHRP标记的细胞团为远位触液神经元,其中少数触液神经元有p-p38MAPK表达,且当给予动物噪声应激刺激时,p-p38MAPK免疫阳性神经元和CB-HRP/p—p38MAPK双重标记神经元数量显著增加,提示脑实质内的这种远位触液神经元中的P—p38MAPK可能参与了机体对噪声应激的信息传递或调控,其作用随应激天数增加而日趋增强.  相似文献   

17.
Prolactin (PRL) is essential for normal reproduction and signals through two types of receptors, the short (PRL-RS) and long (PRL-RL) form. We have previously shown that transgenic mice expressing only PRL-RS (PRLR(-/-)RS) display abnormal follicular development and premature ovarian failure. Here, we report that MAPK, essential for normal follicular development, is critically inhibited by PRL in reproductive tissues of PRLR(-/-)RS mice. Consequently, the phosphorylation of MAPK downstream targets are also markedly inhibited by PRL without affecting immediate upstream kinases, suggesting involvement of MAPK specific phosphatase(s) in this inhibition. Similar results are obtained in a PRL-responsive ovary-derived cell line (GG-CL) that expresses only PRL-RS. However, we found the expression/activation of several known MAPK phosphatases not to be affected by PRL, suggesting a role of unidentified phosphatase(s). We detected a 27-kDa protein that binds to the intracellular domain of PRL-RS and identified it as dual specific phosphatase DUPD1. PRL does not induce expression of DUDP1 but represses its phosphorylation on Thr-155. We also show a physical association of this phosphatase with ERK1/2 and p38 MAPK. Using an in vitro phosphatase assay and overexpression studies, we established that DUPD1 is a MAPK phosphatase. Dual specific phosphatase inhibitors as well as siRNA to DUPD1, completely prevent PRL-mediated MAPK inhibition in ovarian cells. Our results strongly suggest that deactivation of MAPK by PRL/PRL-RS contributes to the severe ovarian defect in PRLR(-/-)RS mice and demonstrate the novel association of PRL-RS with DUPD1 and a role for this phosphatase in MAPK deactivation.  相似文献   

18.
BACKGROUND INFORMATION: Many studies indicate that innate immunity in invertebrates can be modulated by a cytokine network like in vertebrates. In molluscs, the immune response is carried out by circulating haemocytes and soluble haemolymph factors. In the present study, the effects of heterologous TNFalpha (tumour necrosis factor alpha) on cell signalling and function in the haemocytes of the bivalve Mytilus galloprovincialis Lam. were investigated. RESULTS AND CONCLUSIONS: Addition of TNFalpha in the absence of haemolymph serum [in ASW (artificial sea water)] induced cellular stress, as indicated by lysosomal destabilization, and decreased phagocytosis; on the other hand, in the presence of serum, TNFalpha did not affect lysosomal stability and even stimulated phagocytosis. TNFalpha induced rapid phosphorylation of the stress-activated p38 and JNK (c-Jun N-terminal kinase) MAPKs (mitogen-activated protein kinases); both effects were persistent in ASW but transient in serum. Activation of p38 and JNKs in mediating the effects of TNFalpha was confirmed by the use of specific MAPK inhibitors. Moreover, flow cytometric analysis indicated that TNFalpha in the presence of serum induced transient phosphatidylserine exposure on the haemocyte surface, evaluated as annexin V binding; in ASW, the cytokine resulted in a stable increase in the percentage of both annexin- and propidium iodide-positive cells, indicating possible apoptotic/necrotic processes. The results indicate that TNFalpha can affect the function of bivalve haemocytes through conserved transduction pathways involving stress-activated MAPKs and suggest that the haemocyte response to the cytokine is influenced by soluble haemolymph components.  相似文献   

19.
Previously, we have reported that insulin induces the expression of the dual-specificity tyrosine phosphatase Mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) and that this may represent a negative feedback mechanism to regulate insulin-stimulated MAP kinase activity. In this work, the mechanism of regulation of MKP-1 expression by insulin was examined, particularly the role of the MAP kinase superfamily. Inhibition of the ERK pathway attenuated insulin-stimulated MKP-1 mRNA expression. Expression of dominant negative molecules of the JNK pathway also abolished insulin-stimulated MKP-1 expression. However, inhibition of p38MAPK activity by SB202190 had no effect on insulin-stimulated MKP-1 induction. Simultaneous inhibition of the ERK and JNK pathways abolished the ability of insulin to stimulate MKP-1 expression, however, this combined inhibition was neither additive nor synergistic, suggesting these pathways converge to act on a common final effector. In conclusion, induction of MKP-1 mRNA expression in Hirc B cells by insulin requires activation of both the ERK and JNK pathways, but not p38MAPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号