首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analysis of latent human cytomegalovirus   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

2.
Recurrence of infectious virus from the latent viral genomes is the initiating event in the pathogenesis of cytomegalovirus (CMV) disease during states of immunodeficiency. Interstitial pneumonia is a frequent manifestation of posttransplantation CMV disease, in particular after bone marrow transplantation and heart and lung transplantations. Recurrence can occur within the transplant derived from a latent infected donor as well as within latently infected organs of the transplant recipient. The reason for a predilection of the lungs as a site of CMV pathology is so far unknown. In a murine model of CMV latency, the lungs were identified as an authentic site of latent infection, since the viral genome remained detectable in lung tissue even after it was cleared to an undetectable level in blood and bone marrow. A comparison between the lungs and the spleen, the previously most thoroughly investigated site of murine CMV latency, revealed a 10-fold-higher burden of latent viral genome for the lungs. Most important, the organ-specific risk of in vivo recurrence was found to correlate with the organ-specific viral genomic load. This new finding thus characterizes the lungs as a high-risk organ for CMV recurrence, and this fact may explain in part why interstitial pneumonia is a frequent manifestation of recurrent CMV infection.  相似文献   

3.
Latent murine cytomegalovirus DNA in splenic stromal cells of mice.   总被引:9,自引:5,他引:4       下载免费PDF全文
Latency is an integral feature of the pathogenesis of cytomegalovirus infection and disease. Using in situ hybridization, we detected viral DNA in the splenic stroma of mice with acute murine cytomegalovirus (MCMV) infection but could not detect latent infection. By using enzymatic amplification of a 700-bp region of exon 4 of immediate-early gene 1 of MCMV, viral DNA was consistently detected in whole spleens of latently infected mice. MCMV DNA was detected in 16 of 23 stromal cell fractions from latently infected animals, in only 2 of 13 residual nonstromal cell fractions, and in none of 9 additional lymphocyte or macrophage-enriched nonstromal cell preparations. We conclude that MCMV DNA is maintained predominantly, and possibly exclusively, in stromal cells in the spleens of latently infected mice.  相似文献   

4.
5.
CMV infection is one of the most common complications in immunocompromised individuals, such as organ and bone marrow transplant patients. Both innate and adaptive immune responses are required for defense against CMV infection. In murine CMV (MCMV) infection, strains harboring the MCMV-specific NK cell activation receptor, Ly49H (Klra8), are resistant. In contrast, MCMV infection of mice lacking Ly49H gene causes early mortality due to uncontrolled viral replication. In this study, we report the successful protection of mice from lethal MCMV infection with gene-transferred polyclonal CD8 T cells. CD8 T cells expressing a chimeric receptor comprising Ly49H extracellular and CD3zeta cytoplasmic domains are capable of killing target cells expressing the MCMV protein, m157. CD8 T cells expressing the chimeric receptor protect mice in vivo from lethality in the acute phase of MCMV infection, leading to the establishment of long-term protection. These data provide proof-of-principle evidence that a novel strategy for harnessing CD8 cytolytic function through TCR-independent yet pathogen-specific receptor can result in effective protection of hosts from pathogens.  相似文献   

6.
7.
8.
Spleen cells which replicate murine cytomegalovirus (MCMV) during acute infection in vivo were identified by electron microscopy and combined immunocytochemical staining and in situ cytohybridization. Most infected cells, as defined by in situ hybridization for viral RNA with MCMV-specific probes, were shown to be positive for factor VIII-related antigen and negative for Ia, Thy-1, and F4/80 antigens. Electron microscopic ultrastructural observations indicated that the infected cells in the spleen are predominantly sinusoidal-lining cells. We also studied reactivation of MCMV from latently infected mice by cocultivation of spleen cells with mouse embryo fibroblasts. Virus was only recovered from cells in preparations of stromal (or reticular) fragments, and not from spleen cell suspensions. Neither removal of immunoglobulin-bearing cells from the stromal fragments by panning nor depletion of Thy-1- and Ia-bearing stromal cells by treatment with monoclonal antibodies and complement reduced the frequency of reactivation of MCMV. These data suggest that T lymphocytes, mature B lymphocytes, and other Ia-bearing cells are not predominant reservoirs of latent MCMV.  相似文献   

9.
Popkin DL  Virgin HW 《Journal of virology》2003,77(18):10125-10130
Despite robust host immune responses the betaherpesvirus murine cytomegalovirus (MCMV) is able to establish lifelong infection. This capacity is due at least in part to the virus utilizing multiple immune evasion mechanisms to blunt host responses. Macrophages are an important cell for MCMV infection, dissemination, and latency despite expression in the host of multiple cytokines, including tumor necrosis factor alpha (TNF-alpha), that can induce an antiviral state in macrophages or other cells. In this study, we found that MCMV infection of bone marrow-derived macrophages inhibited TNF-alpha-induced ICAM-1 surface expression and mRNA expression in infected cells via expression of immediate early and/or early viral genes. MCMV infection blocked TNF-alpha-induced nuclear translocation of NF-kappaB. This inhibition of TNF-alpha signaling was explained by a decrease in TNF receptor 1 (TNFR1) and TNFR2 that was due to decreased mRNA for the latter. These findings provide a mechanism by which MCMV can evade the effects of an important host cytokine in macrophages.  相似文献   

10.
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans involving the developing brain. It is hypothesized that the brain disorders occur after recurrent reactivation of the latent infection in some kinds of cells in the brains. In order to test this hypothesis, we examined the reactivation of latent murine CMV (MCMV) infection in the mouse brain by transfer to brain slice culture. We infected neonatal and young adult mice intracerebrally with recombinant MCMV in which the lacZ gene was inserted into a late gene. The brains were removed 6 months after infection and used to prepare brain slices that were then cultured for up to 4 weeks. Reactivation of latent infection in the brains was detected by beta-galactosidase (beta-Gal) staining to assess beta-galactosidase expression. Viral replication was also confirmed by the plaque assay. Reactivation was observed in about 75% of the mice infected during the neonatal period 6 months after infection. Unexpectedly, reactivation was also observed in 75% of mice infected as young adults, although the infection ratio in the brain slices was significantly lower than that in neonatally infected mice. Beta-Gal-positive cells were observed in marginal regions of the brains or immature neural cells in the ventricular walls. Immunohistochemical staining showed that the beta-Gal-positive reactivated cells were neural stem or progenitor cells. These results suggest that brain disorders may occur long after infection by reactivation of latent infection in the immature neural cells in the brain.  相似文献   

11.
Human cytomegalovirus (CMV) infection of bone marrow transplant recipients can cause pancytopenia, as well as life-threatening interstitial pneumonia. CMV replicates actively in bone marrow stromal cells, whereas it remains latent in hematopoietic progenitors. Our aim was to study the influence of CMV infection on adherence of CD34(+) cells to the myofibroblastic component of human bone marrow and examine transmission of virus from myofibroblasts to CD34(+) cells. We show that smooth actin, but not fibronectin, organization is markedly modified by CMV infection of bone marrow stromal myofibroblasts. Nonetheless, CMV infection led to increased adherence of the CD34(+) progenitor cell line, KG1a, relative to adherence to uninfected myofibroblasts from the same donors. Adherence of CD34(+) cells to infected bone marrow myofibroblasts resulted in transfer of virions and viral proteins through close cell-to-cell contacts. This phenomenon may play a role in the pathophysiology of CMV bone marrow infection and in eventual virus dissemination.  相似文献   

12.
Role of nitric oxide in murine cytomegalovirus (MCMV) infection   总被引:8,自引:0,他引:8  
Cytomegalovirus (CMV) is a typical pathogen of an opportunistic infection. In this review article, various roles of nitric oxide (NO) in murine CMV (MCMV) infections, including acute, persistent and latent infections, are discussed. In the acute phase of MCMV infection, NO plays a protective role against MCMV infection. In contrast, NO has been proven to act as a pathogenic factor in a model of MCMV pneumonitis. In MCMV persistent infection, when MCMV was detected only in the salivary gland, T cells of mice were modified to produce a massive amount of such cytokines as TNF-alpha and IFN-gamma upon in vivo stimulation with anti-CD3. These cytokines then induced mRNA for inducible NO synthase (iNOS), thus resulting in the production of a large amount of NO. A histochemical study demonstrated that NO damaged bronchial epithelial cells, and thereby apparently inducing pneumonitis. In the case of a latent infection, when viral DNA was detected in the host in spite of the absence of any infectious particle, NO increased the amount of persistently-infected MCMV-DNA. As a result, NO was found to act as "a double edged sword" in the CMV-host relationship.  相似文献   

13.
We used virus assay and in situ hybridization with a cloned fragment of the murine cytomegalovirus (MCMV) genome to study MCMV infection of circulating leukocytes harvested from 3-week-old BALB/c, C57BL/6, and C3H mice infected with MCMV intraperitoneally. Infectious virus or MCMV DNA was detected in leukocytes on days 1 through 21 of infection in BALB/c mice and on days 3 through 7 in C57BL/6 mice. On days 5 and 7, MCMV DNA or infectious virus was detected in the leukocytes of 17 (94%) of 18 BALB/c mice and 10 (59%) of 17 C57BL/6 mice. In both strains infection peaked on days 5 and 7, when as many as 0.01 to 0.1% of the circulating leukocytes contained MCMV DNA. In C3H mice, however, infectious virus was rarely recovered from leukocyte fractions and MCMV DNA was detected in the circulating leukocytes of only one animal. Circulating leukocytes may have an important role in the dissemination of CMV infections in susceptible hosts.  相似文献   

14.
Cytomegalovirus (CMV) reactivation in the retina of immunocompromized patients is a cause of significant morbidity as it can lead to blindness. The adaptive immune response is critical in controlling murine CMV (MCMV) infection in MCMV-susceptible mouse strains. CD8(+) T cells limit systemic viral replication in the acute phase of infection and are essential to contain latent virus. In this study, we provide the first evaluation of the kinetics of anti-viral T-cell responses after subretinal infection with MCMV. The acute response was characterized by a rapid expansion phase, with infiltration of CD8(+) T cells into the infected retina, followed by a contraction phase. MCMV-specific T cells displayed biphasic kinetics with a first peak at day 12 and contraction by day 18 followed by sustained recruitment of these cells into the retina at later time points post-infection. MCMV-specific CD8(+) T cells were also observed in the draining cervical lymph nodes and the spleen. Presentation of viral epitopes and activation of CD8(+) T cells was widespread and could be detected in the spleen and the draining lymph nodes, but not in the retina or iris. Moreover, after intraocular infection, antigen-specific cytotoxic activity was detectable and exhibited kinetics equivalent to those observed after intraperitoneal infection with the same viral dose. These data provide novel insights of how and where immune responses are initiated when viral antigen is present in the subretinal space.  相似文献   

15.
Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αβ-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1-/- mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1-/- mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described.  相似文献   

16.
We have previously shown that cytomegalovirus (CMV) can reactivate in lungs of nonimmunosuppressed patients during critical illness. Our recent work has shown that polymicrobial bacterial sepsis can trigger reactivation of latent murine CMV (MCMV). We hypothesize that MCMV reactivation following bacterial sepsis may be caused by inflammatory mediators. To test this hypothesis, BALB/c mice latently infected with Smith strain MCMV received sublethal intraperitoneal doses of lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), or saline. Lung tissue homogenates were evaluated for viral reactivation 3 weeks after mediator injection. Because LPS is known to signal via Toll-like receptor 4 (TLR-4) in mice, further studies blocking this signaling mechanism were performed using monoclonal MTS510. Finally, mice were tested with intravenous TNF-alpha to determine whether this would cause reactivation. All mice receiving sublethal intraperitoneal doses of LPS, TNF-alpha, or IL-1beta had pulmonary reactivation of latent MCMV 3 weeks following injection, and LPS caused MCMV reactivation with kinetics similar to those for sepsis. When TLR-4 signaling was blocked, exogenous LPS did not reactivate latent MCMV. Intravenous TNF-alpha administration at near-lethal doses did not reactivate MCMV. Exogenous intraperitoneal LPS, TNF-alpha, and IL-1beta are all capable of reactivating CMV from latency in lungs of previously healthy mice. LPS reactivation of MCMV appears dependent on TLR-4 signaling. Interestingly, intravenous TNF-alpha did not trigger reactivation, suggesting possible mechanistic differences that are discussed. We conclude that inflammatory disease states besides sepsis may be capable of reactivating CMV from latency.  相似文献   

17.
Bone marrow (BM) failure associated with cytomegalovirus (CMV) infection is a feared complication after clinical BM transplantation. Experiments in long-term BM cultures have indicated that BM stromal cells (BMSC) are targets of productive CMV infection, but an in situ infection of BM stroma remained to be documented, and the pathomechanism is open to question. Here we describe a murine in vivo model of lethal CMV aplastic anemia (CMV-AA). The reconstitution of hematopoietic progenitor cells expressing stem cell factor (SCF) receptor was found to be defective in CMV-AA. While murine CMV replication in permissive parenchymal tissues is cytolytic, the hematopoietic cord was found to be a site of very limited virus production with foci of reticular BMSC expressing the intranuclear viral IE1 protein, but with only a few BMSC positive for viral genome in the in situ hybridization. XX-XY BM chimeras were established in order to quantitate Y-chromosome-tagged BMSC by a PCR specific for the male-sex-determining gene Tdy. This approach revealed that murine CMV infection is not associated with a significant loss of BMSC. Despite the physical integrity of the stromal network, the functional integrity of the stroma was impaired. While housekeeping genes were expressed normally in BMSC of infected mice, the expression of genes encoding the essential hemopoietins SCF, granulocyte colony-stimulating factor, and interleukin-6 was markedly reduced. In conclusion, the mechanism of BM failure is not a stromal lesion but an insufficient stromal function. These findings explain CMV-AA as a manifestation of multiple hemopoietin deficiency.  相似文献   

18.
In the immunocompetent host, primary cytomegalovirus (CMV) infection is resolved by the immune response without causing overt disease. The viral genome, however, is not cleared but is maintained in a latent state that entails a risk of virus recurrence and consequent organ disease. By using murine CMV as a model, we have shown previously that multiple organs harbor latent CMV and that reactivation occurs with an incidence that is determined by the viral DNA load in the respective organ (M. J. Reddehase, M. Balthesen, M. Rapp, S. Jonjic, I. Pavic, and U. H. Koszinowski. J. Exp. Med. 179:185–193, 1994). This predicts that a therapeutic intervention capable of limiting the load of latent viral genome should also reduce the risk of virus recurrence. Here we demonstrate the benefits and the limits of a preemptive CD8 T-cell immunotherapy of CMV infection in the immunocompromised bone marrow transplantation recipient. Antiviral CD8 T cells prevented CMV disease and accelerated the resolution of productive infection. The therapy also resulted in a lower load of latent CMV DNA in organs and consequently reduced the incidence of recurrence. The data thus provide a further supporting argument for clinical trials of preemptive cytoimmunotherapy of human CMV disease with CD8 T cells. However, CD8 T cells failed to clear the viral DNA. The therapy-susceptible portion of the DNA load differed between organs and was highest in the lungs. The existence of an invariant, therapy-resistant load suggests a role for immune system evasion mechanisms in the establishment of CMV latency.Recurrence of productive infection by reactivation of latent viral genome in the immunocompromised host is a feature common to the members of the herpesvirus family (39; reviewed in reference 38). Specifically, in the case of human cytomegalovirus (CMV), the human herpesvirus type 5, primary as well as recurrent infection during the temporal immunodeficiency early after bone marrow (BM) transplantation (BMT) entails a risk of graft failure and severe organ manifestations of CMV disease (8, 44). Early findings by Quinnan et al. (24) have suggested a correlation between efficient reconstitution of the cellular immune response and the control of post-BMT CMV infection, and more recent clinical data have attributed this control to the reconstituted CD8 T cells (35). Accordingly, restoration of antiviral immunity in the critical phase before the reconstitution by BMT becomes effective should diminish the risk of CMV disease. Experimental research with the model of murine CMV infection has positively demonstrated the antiviral and protective efficacy of adoptively transferred acutely sensitized (31, 34) or memory (28) CD8 T cells recovered from immune donors as well as of short-term CD8 T-cell lines propagated in culture (32). These studies have been pivotal for clinical trials of a preemptive CD8 T-cell immunotherapy of post-BMT human CMV infection in patients (37, 43).Infection of the BMT recipient can accidentally result from the transmission of infectious virus, however, productive infection is more commonly initiated by reactivation of latent CMV in either the transplant or the recipient’s own organs or, occasionally, both (11). For the murine model system, we have previously demonstrated the existence of multiple organ sites of CMV latency at which the latent viral DNA is retained after the resolution of productive primary infection and after clearance of the viral genome from hematopoietic leukocytic cells in BM and blood (27). In accordance with the wide distribution of the latent viral DNA, recurrence was found to occur focally in any of the organs, which led us to propose the concept of multifocal CMV latency and recurrence (27). Most importantly, the incidence of recurrence was found to correlate with the load of latent viral DNA in the respective tissue. Specifically, low virus dissemination and rapid control of infection in immunocompetent adult mice resulted in a low load and was associated with a low risk of recurrence, whereas the delayed control of infection in neonatal mice resulted in a high load and was associated with a high risk. Furthermore, there were also organ-specific differences. In accordance with the high incidence of interstitial CMV pneumonia after BMT, the lungs were identified as having a high load of latent CMV (2, 17).It is apparent that antiviral CD8 T cells generated during primary infection as well as memory cells present during latency do not eradicate latently infected cells under physiological conditions, since latency would not exist if they did. However, it has been open to question whether adoptive transfer of antiviral CD8 effector cells could prevent the escape of virus into latency. We will show here that modulation of primary infection by experimental CD8 T-cell immunotherapy has indeed had an effect on the load of latent viral DNA in tissues. The effect of the therapy is of relevance, since the load of latent viral DNA can be kept below the threshold required for effective recurrence. Our data thus provide a further supporting argument for clinical trials of cytoimmunotherapy. Interestingly, however, the data also predict that no dosage of CD8 T cells will prevent the establishment of latency.  相似文献   

19.
CD8+ T-cell persistence can be seen in ganglia harboring latent herpes simplex virus (HSV) infection. While there is some evidence that these cells suppress virus reactivation, this view remains controversial. Given that maintenance of latency by CD8+ T cells would necessitate ongoing exposure to antigen within this site, we sought evidence for such chronic stimulation. Initial experiments showed infiltration by activated but not na?ve CD8+ T cells into ganglia harboring latent HSV infection. While such infiltration was independent of T-cell specificity, once recruited, only virus-specific T cells expressed high levels of preformed granzyme B, a marker of ongoing activation. Moreover, bone marrow replacement chimeras showed that these elevated granzyme levels were totally dependent on presentation by parenchymal cells within the ganglia. Overall, this study argues that activated CD8+ T cells are nonspecifically recruited into latently infected ganglia, and in this site they are exposed to ongoing antigen stimulation, most likely by infected neuronal cells.  相似文献   

20.
Infusion of donor antiviral T cells can provide protective immunity for recipients of hemopoietic progenitor cell transplants, but may cause graft-vs-host disease (GVHD). Current methods of separating antiviral T cells from the alloreactive T cells that produce GVHD are neither routine nor rapid. In a model of lethal murine CMV (MCMV) infection following MHC-mismatched bone marrow transplantation, infusion of MCMV-immune donor lymphocytes pretreated with the DNA cross-linking compound amotosalen prevented MCMV lethality without producing GVHD. Although 95% of mice receiving 30 x 10(6) pretreated donor lymphocytes survived beyond day +100 without MCMV disease or GVHD, all mice receiving equivalent numbers of untreated lymphocytes rapidly died of GVHD. In vitro, amotosalen blocked T cell proliferation without suppressing MCMV peptide-induced IFN-gamma production by MCMV-primed CD8(+) T cells. In vivo, pretreated lymphocytes reduced hepatic MCMV load by 4-log(10) and promoted full hemopoietic chimerism. Amotosalen-treated, MCMV tetramer-positive memory (CD44(high)) CD8(+) T cells persisted to day +100 following infusion, and expressed IFN-gamma when presented with viral peptide. Pretreated T cells were effective at preventing MCMV lethality over a wide range of concentrations. Thus, amotosalen treatment rapidly eliminates the GVHD activity of polyclonal T cells, while preserving long-term antiviral and graft facilitation effects, and may be clinically useful for routine adoptive immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号