首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50= 19.8 microm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 microm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 microm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.  相似文献   

2.
The gene cyaB1 from the cyanobacterium Anabaena sp. PCC 7120 codes for a protein consisting of two N-terminal GAF domains (GAF-A and GAF-B), a PAS domain and a class III adenylyl cyclase catalytic domain. The catalytic domain is active as a homodimer, as demonstrated by reconstitution from complementary inactive point mutants. The specific activity of the holoenyzme increased exponentially with time because the product cAMP activated dose dependently and nucleotide specifically (half-maximally at 1 microM), identifying cAMP as a novel GAF domain ligand. Using point mutants of either the GAF-A or GAF-B domain revealed that cAMP activated via the GAF-B domain. We replaced the cyanobacterial GAF domain ensemble in cyaB1 with the tandem GAF-A/GAF-B assemblage from the rat cGMP-stimulated phosphodiesterase type 2, and converted cyaB1 to a cGMP-stimulated adenylyl cyclase. This demonstrated the functional conservation of the GAF domain ensemble since the divergence of bacterial and eukaryotic lineages >2 billion years ago. In cyanobacteria, cyaB1 may act as a cAMP switch to stabilize committed developmental decisions.  相似文献   

3.
Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of the cyclic nucleotides cAMP and cGMP, which are important second messengers. Five of the 11 mammalian PDE families have tandem GAF domains at their N termini. PDE10A may be the only mammalian PDE for which cAMP is the GAF domain ligand, and it may be allosterically stimulated by cAMP. PDE10A is highly expressed in striatal medium spiny neurons. Here we report the crystal structure of the C-terminal GAF domain (GAF-B) of human PDE10A complexed with cAMP at 2.1-angstroms resolution. The conformation of the PDE10A GAF-B domain monomer closely resembles those of the GAF domains of PDE2A and the cyanobacterium Anabaena cyaB2 adenylyl cyclase, except for the helical bundle consisting of alpha1, alpha2, and alpha5. The PDE10A GAF-B domain forms a dimer in the crystal and in solution. The dimerization is mainly mediated by hydrophobic interactions between the helical bundles in a parallel arrangement, with a large buried surface area. In the PDE10A GAF-B domain, cAMP tightly binds to a cNMP-binding pocket. The residues in the alpha3 and alpha4 helices, the beta6 strand, the loop between 3(10) and alpha4, and the loop between alpha4 and beta5 are involved in the recognition of the phosphate and ribose moieties. This recognition mode is similar to those of the GAF domains of PDE2A and cyaB2. In contrast, the adenine base is specifically recognized by the PDE10A GAF-B domain in a unique manner, through residues in the beta1 and beta2 strands.  相似文献   

4.
Binding of cGMP to the GAF-B domain of phosphodiesterase 2A allosterically activates catalytic activity. We report here a series of mutagenesis studies on the GAF-B domain of PDE2A that support a novel mechanism for molecular recognition of cGMP. Alanine mutations of Phe-438, Asp-439, and Thr-488, amino acids that interact with the pyrimidine ring, decrease cGMP affinity slightly but increase cAMP affinity by up to 8-fold. Each interaction is required to provide for cAMP/cGMP specificity. Mutations of any of the residues that interact with the phosphate-ribose moiety or the imidazole ring abolish cGMP binding. Thus, residues that interact with the pyrimidine ring collectively control cAMP/cGMP specificity, whereas residues that bind the phosphate-ribose moiety and imidazole ring are critical for high affinity binding. Similar decreases in binding were found for mutations made in a bacterially expressed GAF-A/B plus catalytic domain construct. Because these constructs had very high catalytic activity, it appears that these mutations did not cause a global denaturation. The affinities of cAMP and cGMP for wild-type GAF-B alone were approximately 4-fold greater than for the holoenzyme, suggesting that the presence of neighboring domains alters the conformation of GAF-B. More importantly, the PDE2A GAF-B, GAF-A/B, GAF-A/B+C domains, and holoenzyme all bind cGMP with much higher affinity than has previously been reported. This high affinity suggests that cGMP binding to PDE2 GAF-B activates the enzyme rapidly, stoichiometrically, and in an all or none fashion, rather than variably over a large range of cyclic nucleotide concentrations.  相似文献   

5.
Human phosphodiesterase 1 is regulated by a tandem of N-terminal calmodulin/Ca(2+)-binding domains. We grafted the tandems from hPDE1A3 and -B1 onto the cyanobacterial adenylyl cyclase CyaB1 thus replacing an intrinsic tandem GAF-domain. Cyclase activity was stimulated by Ca(2+)/calmodulin 1.9 to 4.4-fold, i.e. similarly as reported for hPDE1 regulation. hPDE4 long isoforms are activated by phosphorylation of a serine located in a conserved RRESF motif in a tandem of N-terminal upstream-conserved regions (UCR). We grafted the UCR tandems from hPDE4A4, -B1, and -D3 onto the CyaB1 cyclase as a reporter enzyme. Activity was enhanced 1.4 to 4.5-fold by respective phosphomimetic (S/D) point mutations. Similarly, cyclase activity was increased 2.5-fold by phosphorylation of the chimera with the PDE4D3 UCR tandem by cAMP-dependent protein kinase. We propose a common mechanism of activation in mammalian phosphodiesterases containing N-terminal tandem regulatory domains. A downstream region is suggested to alternate between random and ordered conformations and to enable switching between inactive, the catalytic domain occluding PDE homodimers and active monomeric PDE catalytic domains.  相似文献   

6.
The dimeric mammalian phosphodiesterases (PDEs) are regulated by N-terminal domains. In PDE5, the GAF-A subdomain of a GAF-tandem (GAF-A and -B) binds the activator cGMP and in PDE10 GAF-B binds cAMP. GAF-tandem chimeras of PDE5 and 10 in which the 36 aa linker helix between GAF-A and -B was swapped lost allosteric regulation of a reporter adenylyl cyclase. In 16 consecutive constructs we substituted the PDE10 linker with that from PDE5. An initial stretch of 10 amino acids coded for isoform specificity. A C240Y substitution uncoupled cyclase activity from regulation, whereas C240F, L or G did not. The C240Y substitution increased basal activity to stimulated levels. Notably, over the next 12 substitutions basal cyclase activity decreased linearly.Further targeted substitutions were based on homology modeling using the PDE2 structure. No combination of substitutions within the initial 10 linker residues caused loss of regulation. The full 10 aa stretch was required. Modeling indicated a potential interaction of the linker with a loop from GAF-A. To interrupt H-bonding a glycine substitution of the loop segment was generated. Despite reduction of basal activity, loss of regulation was maintained. Possibly, the orientation of the linker helix is determined by formation of the dimer at the initial linker segment. Downstream deflections of the linker helix may have caused loss of regulation.  相似文献   

7.
The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.  相似文献   

8.
We analyzed cGMP signaling by the human phosphodiesterase 5 (hPDE5) tandem GAF domain based on a functional activation assay. The C-terminal catalytic domain of the cyanobacterial adenylyl cyclase (AC) cyaB1 was used as a reporter enzyme. We demonstrate functional coupling between the hPDE5 GAF ensemble and the AC resulting in a chimera stimulated 10-fold by cGMP. The hPDE5 GAF domain has an inhibitory effect on AC activity, which is released upon cGMP activation. Removal of 109 amino acids from the N terminus resulted in partial disengagement of the GAF domain and AC, i.e. in a 10-fold increase in basal activity, and affected cGMP affinity. The Ser-102 phosphorylation site of hPDE5 increased cGMP affinity, as shown by a 5-fold lower K(D) for cGMP in a S102D mutant, which mimicked complete modification. The function of the NKFDE motif, which is a signature of all GAF domains with known cyclic nucleotide binding capacity, was elucidated by targeted mutations. Data with either single and double mutants in either GAF A or GAF B or a quadruple mutant affecting both subdomains simultaneously indicated that it is impossible to functionally assign cGMP binding and intramolecular signaling to either GAF A or B of hPDE5. Both subdomains are structurally and functionally interdependent and act in concert in regulating cycaB1 AC and, most likely, also hPDE5.  相似文献   

9.
Structural studies on photoreceptor phosphodiesterases type 6 (PDE6s) have been hampered by an inability to express and purify substantial amounts of enzyme. Here we describe bacterial expression and characterization of the chicken cone PDE6 regulatory GAF-A and GAF-B domains. High affinity cGMP binding was found only for GAF-A as predicted from sequence alignments with the GAF domains of PDE2 and PDE5. A homology model of the GAF-A domain of chicken cone PDE6 based on the crystal structure of mouse PDE2A GAF-B was used to identify residues likely to make contact with cGMP. Alanine mutagenesis of 4 of these residues (F123A, D169A, T172A, and T176A) showed that each was absolutely required for cGMP binding. Three of these residues map to the H4 helical structure of the GAF-A domain indicating this region as a key structural component for cGMP binding. Mutagenesis of another residue, S97A, decreased cGMP binding affinity 5-fold. Finally mutagenesis of Glu-124 indicated that it is responsible for part but not all of the high specificity for cGMP binding to PDE6 GAF-A. Since little data is available on the properties of the chicken cone PDE6 holoenzyme, we also characterized the native PDEs of chicken retina. Two histone-activated PDE6 peaks were separated by ion exchange chromatography and identified by mass spectrometry as cone and rod photoreceptor PDE6s, respectively. Both of these PDEs had cGMP binding and kinetic properties similar to their corresponding bovine photoreceptor PDEs. Moreover the cGMP binding properties of chicken cone PDE6 holoenzyme were very similar to those of the bacterially expressed individual GAF-A or GAF-A/B domains.  相似文献   

10.
The C-terminal catalytic domains of the 11 mammalian phosphodiesterase families (PDEs) are important drug targets. Five of the 11 PDE families contain less well-characterized N-terminal GAF domains. cGMP is the ligand for the GAF domains in PDEs 2, 5, 6 and 11, and cAMP is the ligand for PDE10. Structurally related tandem GAF domains signalling via cAMP are present in the cyanobacterial adenylate cyclases cyaB1 and cyaB2. Because current high-resolution crystal structures of the tandem GAF domains of PDE2 and cyaB2 do not reveal how cNMP specificity is encoded, we generated chimeras between the tandem GAF domains of cyaB1 and PDE2. Both bind the ligand in the GAF B subdomains. Segmental replacements in the highly divergent beta1-beta3 region of the GAF B subdomain of cyaB1 by the corresponding PDE2 regions switched signalling from cAMP to cGMP. Using 10 chimeric constructs, we demonstrated that, for this switch in purine specificity, only 11% of the sequence of the cyanobacterial GAF B needs to be replaced by PDE2 sequences. We were unable, however, to switch the purine specificity of the PDE2 tandem GAF domain from cGMP to cAMP in reverse constructs, i.e. by replacement of PDE2 segments with those from the cyaB1 GAF tandem domain. The data provide a novel view on the structure-function relationships underlying the purine specificity of cNMP-binding GAF domains and indicate that, as potential drug targets, they must be characterized structurally and biochemically one by one.  相似文献   

11.
Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular nuclear Overhauser effects. Comparison with GAF domains from PDE2A and adenylyl cyclase cyaB2 reveals a conserved overall domain fold of a six-stranded beta-sheet and four alpha-helices that form a well defined cGMP binding pocket. However, the nucleotide coordination is distinct with a series of altered binding contacts. The structure suggests that nucleotide binding specificity is provided by Asp-196, which is positioned to form two hydrogen bonds to the guanine ring of cGMP. An alanine mutation of Asp-196 disrupts cGMP binding and increases cAMP affinity in constructs containing only GAF A causing an altered cAMP-bound structural conformation. NMR studies on the tandem GAF domains reveal a flexible GAF A domain in the absence of cGMP, and indicate a large conformational change upon ligand binding. Furthermore, we identify a region of approximately 20 residues directly N-terminal of GAF A as critical for tight dimerization of the tandem GAF domains. The features of the PDE5 regulatory domain revealed here provide an initial structural basis for future investigations of the regulatory mechanism of PDE5 and the design of GAF-specific regulators of PDE5 function.  相似文献   

12.
Trypanosoma cruzi, the causative agent of Chagas disease, encodes a number of different cAMP-specific PDE (phosphodiesterase) families. Here we report the identification and characterization of TcrPDEB1 and its comparison with the previously identified TcrPDEB2 (formerly known as TcPDE1). These are two different PDE enzymes of the TcrPDEB family, named in accordance with the recent recommendations of the Nomenclature Committee for Kinetoplast PDEs [Kunz, Beavo, D'Angelo, Flawia, Francis, Johner, Laxman, Oberholzer, Rascon, Shakur et al. (2006) Mol. Biochem. Parasitol. 145, 133-135]. Both enzymes show resistance to inhibition by many mammalian PDE inhibitors, and those that do inhibit do so with appreciable differences in their inhibitor profiles for the two enzymes. Both enzymes contain two GAF (cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domains and a catalytic domain highly homologous with that of the T. brucei TbPDE2/TbrPDEB2 family. The N-terminus+GAF-A domains of both enzymes showed significant differences in their affinities for cyclic nucleotide binding. Using a calorimetric technique that allows accurate measurements of low-affinity binding sites, the TcrPDEB2 N-terminus+GAF-A domain was found to bind cAMP with an affinity of approximately 500 nM. The TcrPDEB1 N-terminus+GAF-A domain bound cAMP with a slightly lower affinity of approximately 1 muM. The N-terminus+GAF-A domain of TcrPDEB1 did not bind cGMP, whereas the N-terminus+GAF-A domain of TcrPDEB2 bound cGMP with a low affinity of approximately 3 muM. GAF domains homologous with those found in these proteins were also identified in related trypanosomatid parasites. Finally, a fluorescent cAMP analogue, MANT-cAMP [2'-O-(N-methylanthraniloyl)adenosine-3',5'-cyclic monophosphate], was found to be a substrate for the TcPDEB1 catalytic domain, opening the possibility of using this molecule as a substrate in non-radioactive, fluorescence-based PDE assays, including screening for trypanosome PDE inhibitors.  相似文献   

13.
Weeks JL  Zoraghi R  Francis SH  Corbin JD 《Biochemistry》2007,46(36):10353-10364
The phosphodiesterase-11A (PDE11) family consists of four splice variants (PDE11A1-PDE11A4) that contain a conserved carboxyl-terminal (C-terminal) catalytic domain that hydrolyzes cAMP and cGMP; the amino-termini (N-termini) vary in length and amino acid sequence. PDE11A2, PDE11A3, and PDE11A4 contain one or more GAF (cGMP-binding phosphodiesterase, Anabaena adenylyl cyclase, and Escherichia coli FhlA) subdomains. In the present study, PDE11A1 and PDE11A2 demonstrated higher affinity for cAMP and cGMP when directly compared to that of the longest isoform, PDE11A4. Moreover, PDE11A3, PDE11A2, and PDE11A1, which contain progressively shorter N-termini, were more sensitive than PDE11A4 to inhibition by two structurally unrelated inhibitors, tadalafil (Cialis) and vardenafil (Levitra). The substrate and inhibitor affinity differences among the PDE11 isozymes could not be ascribed to differences in their quaternary structure since PDE11A4, PDE11A3, and PDE11A2 were determined to be dimers, and PDE11A1 was a tetramer. These data also demonstrate that PDE11 isozymes containing at least 123 C-terminal amino acids of the GAF-B domain are stable oligomers and that GAF-A is not required for oligomerization. The isolated PDE11 catalytic domain (Met-563-Asn-934) displayed both monomeric and dimeric forms, and upon dilution, this domain was primarily monomeric, indicating that the main oligomerization contacts are within the N-termini of PDE isozymes. This report is the first to describe an inhibitory effect of the N-terminal region of PDE11A4 on the affinity of the catalytic domain for both substrates and inhibitors and the first to define the quaternary structure and the regions that contribute to this structure within the human PDE11A family.  相似文献   

14.
The most recently identified cyclic nucleotide phosphodiesterases, PDE10 and PDE11, contain a tandem of so-called GAF domains in their N-terminal regulatory regions. In PDE2 and PDE5, the GAF domains mediate cGMP stimulation; however, their function in PDE10 and PDE11 remains controversial. Although the GAF domains of PDE10 mediate cAMP-induced stimulation of chimeric adenylyl cyclases, cAMP binding did not stimulate the PDE10 holoenzyme. Comparable data about cGMP and the PDE11 GAF domains exist. Here, we identified synthetic ligands for the GAF domains of PDE10 and PDE11 to reduce interference of the GAF ligand with the catalytic reaction of PDE. With these ligands, GAF-mediated stimulation of the PDE10 and PDE11 holoenzymes is demonstrated for the first time. Furthermore, PDE10 is shown to be activated by cAMP, which paradoxically results in potent competitive inhibition of cGMP turnover by cAMP. PDE11, albeit susceptible to GAF-dependent stimulation, is not activated by the native cyclic nucleotides cAMP and cGMP. In summary, PDE11 can be stimulated by GAF domain ligands, but its native ligand remains to be identified, and PDE10 is the only PDE activated by cAMP.  相似文献   

15.
Lee JM  Cho HY  Cho HJ  Ko IJ  Park SW  Baik HS  Oh JH  Eom CY  Kim YM  Kang BS  Oh JI 《Journal of bacteriology》2008,190(20):6795-6804
The DevS histidine kinase of Mycobacterium smegmatis contains tandem GAF domains (GAF-A and GAF-B) in its N-terminal sensory domain. The heme iron of DevS is in the ferrous state when purified and is resistant to autooxidation from a ferrous to a ferric state in the presence of O(2). The redox property of the heme and the results of sequence comparison analysis indicate that DevS of M. smegmatis is more closely related to DosT of Mycobacterium tuberculosis than DevS of M. tuberculosis. The binding of O(2) to the deoxyferrous heme led to a decrease in the autokinase activity of DevS, whereas NO binding did not. The regulation of DevS autokinase activity in response to O(2) and NO was not observed in the DevS derivatives lacking its heme, indicating that the ligand-binding state of the heme plays an important role in the regulation of DevS kinase activity. The redox state of the quinone/quinol pool of the respiratory electron transport chain appears not to be implicated in the regulation of DevS activity. Neither cyclic GMP (cGMP) nor cAMP affected DevS autokinase activity, excluding the possibility that the cyclic nucleotides serve as the effector molecules to modulate DevS kinase activity. The three-dimensional structure of the putative GAF-B domain revealed that it has a GAF folding structure without cyclic nucleotide binding capacity.  相似文献   

16.
Trypanosoma brucei, the causative agent of sleeping sickness in humans and livestock, expresses at least three cAMP-specific class I phosphodiesterases (PDEs), all of which are essential for survival of the parasite. These PDEs have either one or two N-terminal GAF domains, which in other proteins function as signaling domains. However, neither the functional roles nor ligands for these domains in trypanosome PDEs are known. The present study shows that TbPDE2B, which contains two tandem GAF domains, binds cAMP with high affinity through its GAF-A domain. A purified recombinant N terminus + GAF-A domain binds cAMP with an affinity (Ki) of approximately 16 nM. It also binds cGMP but with a 15-fold lower affinity of approximately 275 nM. The TbPDE2B holoenzyme has a somewhat lower affinity (approximately 55 nM) for cAMP but a greatly lower affinity (approximately 10 microM) for cGMP. This suggests that both the selectivity and affinity for a ligand can be determined not only by the nature of the binding domain but also by the adjacent domains. Additionally, binding of cAMP to the holoenzyme showed positive cooperativity, with a Hill coefficient value of 1.75. However, binding of cGMP to the holoenzyme did not show any cooperativity, suggesting differences in the conformational changes caused by binding of these two cyclic nucleotides with the protein. Point mutation of a key predicted binding site residue (T317A) resulted in a complete loss of high affinity cAMP binding. This mutation increased the apparent Km of the mutant enzyme for substrate without altering the Vmax. A truncated catalytic domain construct of TbPDE2B also exhibited an increased Km, strongly suggesting that cAMP binding to the GAF-A domain can regulate TbPDE2B by allowing the full activity of the enzyme to be expressed. These properties of the GAF-A domain of TbPDE2B thus suggest that it could be a new target for anti-trypanosomal drugs.  相似文献   

17.
18.
The tandem GAF domain of human phosphodiesterase 11A4 (hPDE11A4) requires 72 microm cGMP for half-maximal effective concentration (EC(50)) of a cyanobacterial adenylyl cyclase used as a reporter enzyme. Here we examine whether modifications in the N-terminus of PDE11A4 affect cGMP signalling. The N-terminus has two phosphorylation sites for cyclic nucleotide monophosphate-dependent protein kinases (Ser117, Ser168). Phosphorylation of both by cAMP-dependent protein kinase decreased the EC(50) value for cGMP from 72 to 23 microm. Phosphomimetic point mutations (S117D/S167D), which project complete phosphorylation, lowered the EC(50) value to 16 microm. Structural and sequence data indicate that 196 amino acids precede the start of the GAF domain in hPDE11A4. Removal of 197 amino acids yielded unregulated cyclase activity, whereas truncation by 196 amino acids resulted in a cGMP-regulated protein with a cGMP EC(50) value of 7.6 microm. Truncation by 176 amino acids was required for cGMP EC(50) values to decrease to below 10 microm; a construct truncated by 168 amino acids had an EC(50) value of 224 microm. The decrease in EC(50) values was accompanied by a sixfold increase in basal activity; the extent of cGMP stimulation remained unaffected, however. We conclude that N-terminal modifications strongly affect cGMP regulation of hPDE11A4.  相似文献   

19.
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFa F163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET (2) assays. BRET (2) ratios of the wild type GAFa fusion protein, but not GAFa F163A, increased in the presence of cGMP but not cAMP. Higher basal BRET (2) ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFa F163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET (2) technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET (2) sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.  相似文献   

20.
Most organisms maintain a transmembrane sodium gradient for cell function. Despite the importance of Na(+) in physiology, no directly Na(+)-responsive signalling molecules are known. The CyaB1 and CyaB2 adenylyl cyclases of the cyanobacterium Anabaena PCC 7120 are inhibited by Na(+). A D360A mutation in the GAF-B domain of CyaB1 ablated cAMP-mediated autoregulation and Na(+) inhibition. Na(+) bound the isolated GAF domains of CyaB2. cAMP blocked Na(+) binding to GAF domains but Na(+) had no effect on cAMP binding. Na(+) altered GAF domain structure indicating a mechanism of inhibition independent of cAMP binding. DeltacyaB1 and DeltacyaB2 mutant strains did not grow below 0.6 mM Na(+) and DeltacyaB1 cells possessed defects in Na(+)/H(+) antiporter function. Replacement of the CyaB1 GAF domains with those of rat phosphodiesterase type 2 revealed that Na(+) inhibition has been conserved since the eukaryotic/bacterial divergence. CyaB1 and CyaB2 are the first identified directly Na(+)-responsive signalling molecules that function in sodium homeostasis and we propose a subset of GAF domains underpin an evolutionarily conserved Na(+) signalling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号