首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence indicate that glutamate NMDA receptors are critically involved in long-term potentiation (LTP) and in certain forms of learning. It was previously demonstrated that memory formation of an inhibitory avoidance task in chick is specifically associated with an increase in the density of NMDA receptor in selected brain regions. Here we report on the effect of a one trial inhibitory avoidance training in rats, a hippocampal-dependent learning task, on the levels of different subunits of the glutamate NMDA receptor in synaptic plasma membranes (SPM) isolated from the hippocampus. Training rats on a one trial inhibitory avoidance task results in a rapid, transient and selective increase (+33 %, p < 0.05) in NMDA NR1 subunit expression in hippocampal SPM of rats sacrificed 30 min posttraining. No changes were observed at 0 or 120 min after training or in shocked animals in comparison to naive control rats. In addition, no training-associated increase in the levels of NMDA NR2A and NR2B or AMPA GluR 2/3 subunits was observed at any timepoint tested. In conclusion, the present findings support the hypothesis that alterations in expression of synaptic NMDA NR1 subunits in the hippocampus are specifically associated with memory formation of an inhibitory avoidance task and strongly suggest that hippocampal NMDA receptors are crucially involved in the neural mechanisms underlying certain forms of learning.These authors contributed equally to this work  相似文献   

2.
Neuroleukin (NLK) is a multifunctional protein involved in neuronal growth and survival, cell motility and differentiation, and glucose metabolism. We report herein that hippocampal expression of NLK and its receptor gp78 is associated with maze learning in rats. First, mRNA levels of NLK and gp78 were significantly increased in hippocampi of male Fischer-344 rats following training in the Stone T-maze and the Morris water maze. Second, a parallel increase was found in hippocampal NLK and gp78 proteins after maze learning. Third, NLK and gp78 mRNA and protein expression in hippocampus was reduced in a group of aged rats that showed more errors during the acquisition of the Stone maze task as compared with young rats. Finally, application of recombinant NLK to hippocampal neurons significantly enhanced glutamate-induced ion currents, functional molecular changes that have been correlated with learning in vivo. Taken together, our results identify a novel association of hippocampal expression of NLK and its receptor gp78 with rat maze learning. Interaction of NLK with gp78 and subsequent signaling may strengthen synaptic mechanisms underlying learning and memory formation.  相似文献   

3.
Alterations in synaptic efficiency that underlie learning and memory consolidation appear to require an accompanying reconfiguration of the extracellular matrix (ECM). This restructuring of the ECM is carried out, in part, by a family of enzymes called, the matrix metalloproteinases, which includes matrix metalloproteinase-3 (MMP-3: stromelysin-1). The present study determined that a transient elevation in hippocampal MMP-3 expression occurred in rats following associative learning in the passive avoidance (PA) task. No change in MMP-3 was observed when rats were exposed either to the behavioral apparatus or the training stimulus alone. Furthermore, when an MMP-3 inhibitor was administered prior to PA training, dose-dependent learning deficits were observed, suggesting a causal relationship between learning-induced hippocampal MMP-3 elevation and associative memory formation. These findings suggest that increased hippocampal MMP-3 expression is an event that may play an important role in synaptic plasticity and memory consolidation.  相似文献   

4.
Whole-brain irradiation is used for the treatment of brain tumors, but can it also induce neural changes, with progressive dementia occurring in 20-50% of long-term survivors. The present study investigated whether 45 Gy of whole-brain irradiation delivered to 12-month-old Fischer 344 x Brown Norway rats as nine fractions over 4.5 weeks leads to impaired Morris water maze (MWM) performance 12 months later. Compared to sham-irradiated rats, the irradiated rats demonstrated impaired MWM performance. The relative levels of the NR1 and NR2A but not the NR2B subunits of the NMDA receptor were significantly higher in hippocampal CA1 of irradiated rats compared to control rats. No significant differences were detected for these NMDA subunits in CA3 or dentate gyrus. Further analysis of CA1 revealed that the relative levels of the GluR1 and GluR2 subunits of the AMPA receptor and synaptophysin were not altered by whole-brain irradiation. In summary, a clinically relevant regimen of fractionated whole-brain irradiation led to significant impairments in spatial learning and reference memory and alterations in the relative levels of subunits of the NMDA, but not the AMPA, receptors in hippocampal CA1. These findings suggest for the first time that radiation-induced cognitive impairments may be associated with alterations in glutamate receptor composition.  相似文献   

5.
It is well documented that the hormone leptin plays a pivotal role in regulating food intake and body weight via its hypothalamic actions. However, leptin receptors are expressed throughout the brain with high levels found in the hippocampus. Evidence is accumulating that leptin has widespread actions on CNS function and in particular learning and memory. Recent studies have demonstrated that leptin-deficient or-insensitive rodents have impairments in hippocampal synaptic plasticity and in spatial memory tasks performed in the Morris water maze. Moreover, direct administration of leptin into the brain facilitates hippocampal long-term potentiation (LTP), and improves memory performance in mice. There is also evidence that, at the cellular level, leptin has the capacity to convert hippocampal short-term potentiation (STP) into LTP, via enhancing NMDA receptor function. Recent data indicates that leptin can also induce a novel form of NMDA receptor-dependent hippocampal long-term depression. Here, we review the evidence implicating a key role for the hormone leptin in modulating hippocampal synaptic plasticity and discuss the role of lipid signaling cascades in this process.  相似文献   

6.
Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission in hippocampal CA1 neurons. This effect is mediated by a facilitated synaptic delivery of AMPA receptors, which is accompanied by enhanced NMDA receptor-dependent long-term potentiation (LTP). Both LTP and cognitive enhancement are mediated by an initial PKC activation, which is followed by persistent CaMKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer.  相似文献   

7.
To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partially dependent on L-type voltage-dependent Ca2+ channels (VDCCs) and metabotropic glutamate receptors (mGluRs). Long-term depression (LTD) was not induced in RyR3-deficient mice. RyR3-deficient mice also exhibited improved spatial learning on a Morris water maze task. These results suggest that in wild-type mice, in contrast to the excitatory role of Ca2+ influx, RyR3-mediated intracellular Ca2+ ([Ca2+]i) release from endoplasmic reticulum (ER) may inhibit hippocampal LTP and spatial learning.  相似文献   

8.
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β(1) integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β(1) integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.  相似文献   

9.
经过长期的高脂膳食后并非所有个体都会发生肥胖,还有些个体会产生肥胖抵抗现象。高脂膳食影响海马依赖的学习记忆等认知功能已被广泛证实,但目前关于高脂膳食对肥胖抵抗个体学习记忆能力影响的研究仍较少见。本文旨在对比研究高脂膳食对肥胖易感(obesity-prone, OP)和肥胖抵抗(obesity-resistant, OR)大鼠空间学习记忆能力的影响,并探讨其潜在的可能机制。Morris水迷宫结果显示,肥胖易感大鼠的学习能力显著低于对照大鼠和肥胖抵抗大鼠,但3组大鼠的记忆功能无显著性差异。Western印迹结果显示,与对照组相比,肥胖易感和肥胖抵抗大鼠海马内脑源性神经营养因子(BDNF)、血管内皮细胞生长因子(VEGF)和突触素(SYN)的含量均显著降低,丙二醛(MDA)和白介素1β(IL-1β)的含量均显著升高;且肥胖易感大鼠海马内上述蛋白质含量的变化更明显。免疫荧光染色和激光共聚焦显微镜扫描结果均显示,肥胖易感大鼠的海马神经发生水平显著低于肥胖抵抗大鼠和对照大鼠,但肥胖抵抗大鼠的海马神经发生水平与对照大鼠相比未见显著性变化。这些结果提示,高脂膳食可能是通过降低海马内突触可塑相关蛋白质的表达和神经发生,以及加剧炎症反应来损害肥胖易感大鼠的空间学习能力,而对肥胖抵抗大鼠的学习记忆能力影响不显著。  相似文献   

10.
Cell recognition molecules are involved in nervous system development and participate in synaptic plasticity in the adult brain. The close homolog of L1 (CHL1), a recently identified member of the L1 family of cell adhesion molecules, is expressed by neurons and glia in the central nervous system and by Schwann cells in the peripheral nervous system in a pattern overlapping, but distinct from, the other members of the L1 family. In humans, CHL1 (also referred to as CALL) is a candidate gene for 3p- syndrome-associated mental impairment. In the present study, we generated and analyzed CHL1-deficient mice. At the morphological level, these mice showed alterations of hippocampal mossy fiber organization and of olfactory axon projections. Expression of the mRNA of the synapse-specific neural cell adhesion molecule 180 isoform was upregulated in adult CHL1-deficient mice, but the mRNA levels of several other recognition molecules were not changed. The behavior of CHL1-deficient mice in the open field, the elevated plus maze, and the Morris water maze indicated that the mutant animals reacted differently to their environment. Our data show that the permanent absence of CHL1 results in misguided axonal projections and aberrant axonal connectivity and alters the exploratory behavior in novel environments, suggesting deficits in information processing in CHL1-deficient mice.  相似文献   

11.
Dendritic spines are protrusions from the dendritic shaft that host most excitatory synapses in the brain. Although they first emerge during neuronal maturation, dendritic spines remain plastic through adulthood, and recent advances in the molecular mechanisms governing spine morphology have shown them to be exquisitely sensitive to changes in the micro-environment. Among the many factors affecting spine morphology are components and regulators of the extracellular matrix (ECM). Modification of the ECM is critical to the repair of injuries throughout the body, including the CNS. Matrix metalloproteinase (MMP)-7/matrilysin is a key regulator of the ECM during pathogen infection, after nerve crush and in encephalitogenic disorders. We have investigated the effects of MMP-7 on dendritic spines in hippocampal neuron cultures and found that it induces the transformation of mature, short mushroom-shaped spines into long, thin filopodia reminiscent of immature spines. These changes were accompanied by a dramatic redistribution of F-actin from spine heads into thick, rope-like structures in the dendritic shaft. Strikingly, MMP-7 effects on dendritic spines were similar to those of NMDA treatment, and both could be blocked by channel-specific antagonists. These findings are the first direct evidence that MMPs can influence the morphology of mature dendritic spines, and hence synaptic stability.  相似文献   

12.
Although deficits in synaptic plasticity have been identified in aged or neuroinflamed animals with memory impairments, few studies have examined the cellular basis of plasticity in such animals. Here, we examined whether chronic neuroinflammation altered long-term depression (LTD) and studied the underlying mechanism of LTD impairment by neuroinflammation. Chronic neuroinflammation was induced by administration of lipopolysaccharide (LPS) to the fourth ventricle. Excitatory postsynaptic potentials were recorded extracellularly in the rat hippocampal CA1 area to examine alterations in synaptic plasticity. Chronic administration of LPS induced remarkable memory impairment in the Morris water maze test. N-methyl-d-aspartate receptor (NMDAR)-dependent LTD was almost absent in LPS-infused animals. The AMPA receptor (AMPAR)-mediated synaptic response was reduced in the LPS-infused group. These results suggest that reduction in NMDAR-dependent LTD might arise because of alterations in postsynaptic AMPARs as well as NMDARs and that such changes may be present in mild and early forms of Alzheimer-type dementia.  相似文献   

13.
The Morris water maze (MWM) is a test of spatial learning for rodents that relies on distal cues to navigate from start locations around the perimeter of an open swimming arena to locate a submerged escape platform. Spatial learning is assessed across repeated trials and reference memory is determined by preference for the platform area when the platform is absent. Reversal and shift trials enhance the detection of spatial impairments. Trial-dependent, latent and discrimination learning can be assessed using modifications of the basic protocol. Search-to-platform area determines the degree of reliance on spatial versus non-spatial strategies. Cued trials determine whether performance factors that are unrelated to place learning are present. Escape from water is relatively immune from activity or body mass differences, making it ideal for many experimental models. The MWM has proven to be a robust and reliable test that is strongly correlated with hippocampal synaptic plasticity and NMDA receptor function. We present protocols for performing variants of the MWM test, from which results can be obtained from individual animals in as few as 6 days.  相似文献   

14.
DS (Down syndrome), resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans) in the ECM (extracellular matrix) can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls). In young (5 months old) Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95) compared with LMCs. In aged (20 months old) Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze) and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets), an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits.  相似文献   

15.
The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.  相似文献   

16.
This study examined the protective effect of phenobarbital on kainic acid-induced deficits in acquisition learning. A single kainic acid injection (9 mg/kg i.p.) was administered five days prior to testing using the Morris water maze test. Kainic acid produced deficits in the acquisition of spatial information observed as an increase in latency to a hidden escape platform. Daily phenobarbital treatment (20 mg/kg i.p.) initiated 45 minutes prior to the kainic acid injection blocked the kainic acid-induced deficits in acquisition learning. When daily phenobarbital treatment was initiated 2-3 hours after kainic acid seizure development it did not block the kainic acid induced-deficits in water maze performance. Daily administration of phenobarbital alone at the moderate concentration used in this study did not cause alterations in behavioral performance in the Morris water maze. These studies indicate that phenobarbital pre-treatment results in a behavioral neuroprotection against kainic acid-induced neurotoxicity.  相似文献   

17.
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.  相似文献   

18.
Xi G  Hui J  Zhang Z  Liu S  Zhang X  Teng G  Chan KC  Wu EX  Nie B  Shan B  Li L  Reynolds GP 《PloS one》2011,6(12):e28686
It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS), to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA) in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.  相似文献   

19.
Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform, regarding exploration, habituation, seizure susceptibility and spatial learning. The phenotype in these mice was associated with histological adaptations in the hippocampal mossy fiber field size. Here, mice lacking the ubiquitous mitochondrial creatine kinase isoform (UbCKmit-/- mice) showed, when subjected to a similar battery of behavioral tasks, diminished open field habituation and slower spatial learning acquisition in the Morris water maze task, but normal sensory or motor functions. A reduced acoustic startle response, higher threshold, and lack of prepulse inhibition were observed in UbCKmit-/- mice, suggesting that the unconditioned reflexive responsiveness is not optimal. Our findings suggest a role for mitochondrial CK-mediated high-energy phosphoryl transfer in synaptic signalling in the acoustic signal response network and hippocampal-dependent learning circuitry of brain. Finally, we demonstrate that UbCKmit has a widespread occurrence in the cell soma of neuronal nuclei along the rostro-caudal axis of the brain, i.e. cortex, midbrain, hindbrain, cerebellum and brainstem, similar to the occurrence of B-CK. This may explain the similarity of phenotypes in mice lacking B-CK or UbCKmit. We predict that the remaining functional intactness of the cytosolic B-CK reaction and perhaps the compensatory role of other phosphoryl transfer systems are sufficient to sustain the energy requirements for basic sensory, motor and physiological activities in UbCKmit-/- mice.  相似文献   

20.
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91(phox) and p47(phox), both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91(phox) and p47(phox) mutant mice have mild impairments in hippocampus-dependent memory. The gp91(phox) mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47(phox) mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号