共查询到20条相似文献,搜索用时 15 毫秒
1.
Epithelial tissues facing the external environment are essential to combating microbial infection. In addition to providing a physical barrier, epithelial tissues mount chemical defenses to prevent invasion of internal tissues by pathogens. Here, we describe that the melanization reaction implicated in host defense is activated in the respiratory system, the trachea, of Drosophila. Tracheal melanization can be activated by the presence of microorganisms but is normally blocked by Spn77Ba, a protease inhibitor in the serpin family. Spn77Ba inhibits a protease cascade involving the MP1 and MP2 proteases that activates phenol oxidase, a key enzyme in melanin biosynthesis. Unexpectedly, we found that tracheal melanization resulting from Spn77Ba disruption induces systemic expression of the antifungal peptide Drosomycin via the Toll pathway. Such signaling between local and systemic immune responses could represent an alarm mechanism that prepares the host in case a pathogen breaches epithelial defenses to invade internal tissues. 相似文献
2.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts. 相似文献
3.
《Fly》2013,7(1):105-111
The melanization reaction, involving the synthesis of melanin to encapsulate pathogens, is a prominent immune response in Drosophila, the mosquito, and other insects and arthropods. Biochemical studies with large insects have defined a basic model for how melanization is activated and regulated upon microbial infection. In this model, recognition of a microorganism triggers a serine protease cascade that activates phenol oxidase (PO), a key enzyme in the melanin biosynthetic pathway, and serpin-type protease inhibitors are involved in inhibiting the cascade. In the past few years, genetic studies in Drosophila have identified serine proteases and serpins that regulate activation of PO and melanization in vivo. These studies, along with molecular genetic analysis of melanization in the mosquito, have provided new insight into the role that melanization plays in fighting microbial infection. 相似文献
4.
De Gregorio E Han SJ Lee WJ Baek MJ Osaki T Kawabata S Lee BL Iwanaga S Lemaitre B Brey PT 《Developmental cell》2002,3(4):581-592
In arthropods, the melanization reaction is associated with multiple host defense mechanisms leading to the sequestration and killing of invading microorganisms. Arthropod melanization is controlled by a cascade of serine proteases that ultimately activates the enzyme prophenoloxidase (PPO), which, in turn, catalyzes the synthesis of melanin. Here we report the biochemical and genetic characterization of a Drosophila serine protease inhibitor protein, Serpin-27A, which regulates the melanization cascade through the specific inhibition of the terminal protease prophenoloxidase-activating enzyme. Our data demonstrate that Serpin-27A is required to restrict the phenoloxidase activity to the site of injury or infection, preventing the insect from excessive melanization. 相似文献
5.
The cuticular exoskeleton of arthropods is a composite material comprising well-separated layers that differ in function and molecular constituents. Epidermal cells secrete these layers sequentially, synthesizing components of distal cuticle layers before proximal ones. Could the order of synthesis and secretion be sufficient to account for the precision with which cuticle components localize to specific layers? We addressed this question by studying the spatial restriction of melanization in the Drosophila wing. Melanin formation is confined to a narrow layer within the distal procuticle. Surprisingly, this tight localization depends on the multi-ligand endocytic receptor Megalin (Mgl). Mgl acts, in part, by promoting endocytic clearance of Yellow. Yellow is required for black melanin formation, and its synthesis begins as cuticle is secreted. Near the end of cuticle secretion, its levels drop precipitously by a mechanism that depends on Mgl and Rab5-dependent endocytosis. In the absence of Mgl, Yellow protein persists at higher levels and melanin granules form ectopically in more proximal layers of the procuticle. We propose that the tight localization of the melanin synthesis machinery to the distal procuticle depends not only on the timing of its synthesis and secretion, but also on the rapid clearance of these components before synthesis of subsequent cuticle layers. 相似文献
6.
Drosophila rdgC (retinal degeneration-C) mutants show normal retinal morphology and photoreceptor physiology at young ages. Dark-reared rdgC flies retain this wild-type phenotype, but light-reared mutants undergo retinal degeneration. rdgC photoreceptors with low levels of rhodopsin as a result of vitamin A deprivation or a mutant rhodopsin (ninaE) gene fail to show rdgC-induced degeneration even after prolonged light treatment, demonstrating that degeneration occurs as a result of light stimulation of rhodopsin. Analysis of norpA; rdgC flies shows that the norpA-encoded phospholipase C, the target enzyme of the G protein activated by rhodopsin, is not required for rdgC-induced degeneration. Thus the rdgC+ gene product is required to prevent retinal degeneration that results from a previously unrecognized consequence of rhodopsin stimulation. 相似文献
7.
Microsporidia Paranosema locustae and Paranosema grylli infect fat bodies of orthopteran hosts Locusta migratoria and Gryllus bimaculatus, respectively, and cause formation of nodules consisting of deposits of melanin around heavily infected cells. Both species sporadically produce enlarged or malformed (teratoid) spores as a result of abnormal sporogony. Proportions of teratospores within melanized nodules were 6-10 times higher than in surrounding non-melanized tissues. The increased numbers of teratoid microsporidian spores within melanized regions may indicate the deteriorating effect of melanin metabolites on spore morphogenesis. 相似文献
8.
Phenoloxidase (PO), a melanin-forming enzyme around the foreign bodies, is an important component of the host defense system in invertebrates. Pro-PO is the enzymatically inactive zymogen form of PO. In the Drosophila genome, three Pro-PO isoforms have been identified to date. These include Pro-PO1 and 2, which are primarily expressed in crystal cells, and Pro-PO3, which is predominantly found in the lamellocytes. In this study, we demonstrated that Drosophila Pro-PO3, but not Pro-PO1 or 2, is enzymatically active in its zymogen form. These findings were evidenced by spectacular melanin forming capacities of various cells and tissues that overexpressed these proenzymes. Furthermore, the melanization phenotype observed in the lamellocyte-enriched hop(Tum-1) mutant was drastically reduced in the absence of PPO3, indicating that PPO3 plays a major role in the lamellocyte-mediated spontaneous melanization process. Taken together, these findings indicate that the biochemical properties, activation mode and in vivo role of Pro-PO3 are likely distinct from those of the other two Pro-PO enzymes involved in Drosophila physiology. 相似文献
9.
10.
Tang H Kambris Z Lemaitre B Hashimoto C 《The Journal of biological chemistry》2006,281(38):28097-28104
The melanization reaction is used as an immune mechanism in arthropods to encapsulate and kill microbial pathogens. In Drosophila, the serpin Spn27A regulates melanization apparently by inhibiting the protease that activates phenoloxidase, the key enzyme in melanin synthesis. Here, we have described the genetic characterization of two immune inducible serine proteases, MP1 and MP2, which act in a melanization cascade regulated by Spn27A. MP1 is required to activate melanization in response to both bacterial and fungal infection, whereas MP2 is mainly involved during fungal infection. Pathogenic bacteria and fungi may therefore trigger two different melanization cascades that use MP1 as a common downstream protease to activate phenoloxidase. We have also shown that the melanization reaction activated by MP1 and MP2 plays an important role in augmenting the effectiveness of other immune reactions, thereby promoting resistance of Drosophila to microbial infection. 相似文献
11.
The serpin gene Spn4 from Drosophila melanogaster encodes multiple isoforms with alternative reactive site loops (RSL). Here, we show that isoform Spn4A inhibits human furin with an apparent kassoc of 5.5 x 10(6) M(-1) s(-1). The serpin forms SDS-stable complexes with the enzyme and the RSL of Spn4A is cleaved C-terminally to the sequence -Arg-Arg-Lys-Arg/ in accord with the recognition/cleavage site of furin. Immunofluorescence studies show that Spn4A is localized in the endoplasmic reticulum (ER), suggesting that the inhibitor is an interesting tool for investigating the cellular mechanisms regulating furin and for the design of agents controlling prohormone convertases. 相似文献
12.
K Marchetti 《Proceedings. Biological sciences / The Royal Society》1992,248(1321):41-45
Raising genetically unrelated young is maladaptive, yet brood parasitism is widespread in birds. In several systems, hosts can evolve near-perfect defences against the parasite (discrimination and rejection of unlike eggs), making it difficult to understand how the parasite continues to exist. This study demonstrates costs to host defences (e.g. rejection of one's own eggs) such that once the parasite goes extinct on a particular host species, defence mechanisms are selectively disadvantageous. The consequent loss of host defences, and potential for re-exploitation of the host by the parasite, can explain the continued persistence of avian brood parasites. The results provide one general explanation for coexistence of parasites and their hosts. 相似文献
13.
Papaconstantinou M Pepper AN Wu Y Kasimer D Westwood T Campos AR Bédard PA 《PloS one》2010,5(11):e14049
Background
The multiple endocrine neoplasia type I gene functions as a tumor suppressor gene in humans and mouse models. In Drosophila melanogaster, mutants of the menin gene (Mnn1) are hypersensitive to mutagens or gamma irradiation and have profound defects in the response to several stresses including heat shock, hypoxia, hyperosmolarity and oxidative stress. However, it is not known if the function of menin in the stress response contributes to genome stability. The objective of this study was to examine the role of menin in the control of the stress response and genome stability.Methodology/Principal Findings
Using a test of loss-of-heterozygosity, we show that Drosophila strains lacking a functional Mnn1 gene or expressing a Mnn1 dsRNA display increased genome instability in response to non-lethal heat shock or hypoxia treatments. This is also true for strains lacking all Hsp70 genes, implying that a precise control of the stress response is required for genome stability. While menin is required for Hsp70 expression, the results of epistatic studies indicate that the increase in genome instability observed in Mnn1 lack-of-function mutants cannot be accounted for by mis-expression of Hsp70. Therefore, menin may promote genome stability by controlling the expression of other stress-responsive genes. In agreement with this notion, gene profiling reveals that Mnn1 is required for sustained expression of all heat shock protein genes but is dispensable for early induction of the heat shock response.Conclusions/Significance
Mutants of the Mnn1 gene are hypersensitive to several stresses and display increased genome instability when subjected to conditions, such as heat shock, generally regarded as non-genotoxic. In this report, we describe a role for menin as a global regulator of heat shock gene expression and critical factor in the maintenance of genome integrity. Therefore, menin links the stress response to the control of genome stability in Drosophila melanogaster. 相似文献14.
We investigated eight populations of Drosophila immigrans from low to high montane localities (600–2202 m) for altitudinal variations in abdominal melanization and fitness-related traits (desiccation resistance, copulation duration, and fecundity). On the basis of common garden experiments, persistence between-population differences at 21°C suggests that observed variations in fitness-related traits have a genetic basis. Parent–offspring regression analyses showed higher heritability (h2 = 0.77) for melanization patterns on all the abdominal tergites. All the traits showed significantly higher repeatability across generations. Under colder and drier environments in dispersed montane localities, abdominal melanization and desiccation resistance significantly increased (1.5–1.9 fold) along altitude. Thus, there are correlated effects of abdominal melanization on desiccation resistance. Genetic correlations, based on family means, were significantly high between abdominal melanization and other fitness traits. Furthermore, darker flies along increasing altitude resulted in a 35–40% increase in copulation duration as well as fecundity. There are significantly positive correlations of abdominal melanization with copulation duration as well as fecundity on the basis of within- as well as between-population variations. Such observations are in agreement with the thermal budget hypothesis. Present data suggest that changes in body melanization impact fitness-related traits in montane populations of Drosophila immigrans . 相似文献
15.
16.
A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph 总被引:8,自引:0,他引:8
Asgari S Zhang G Zareie R Schmidt O 《Insect biochemistry and molecular biology》2003,33(10):1017-1024
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. 相似文献
17.
Analyses of cytokines mediating inflammatory reactions are key to understanding the etiopathology of various diseases. This study investigated differences in cytokine gene expression between pulps from healthy virgin teeth and from symptomatic vital teeth with severe caries lesions in a group of young, healthy individuals. The mRNA levels of IL-1alpha, IL-1beta, IL-6, IL-8, and IL-18 were measured concomitantly by quantitative real-time RT-PCR. IL-1alpha and IL-1beta were not expressed at significantly higher levels in symptomatic versus clinically healthy pulps, while the difference was significant for the other cytokines (log-rank test, P<0.05). A concordance test for independence revealed significant correlation between IL-1alpha and IL-1beta, and between IL-6, IL-8, and IL-18 mRNA levels (P<0.05). The cytokine-specific differences revealed a differential significance of gene expression in cytokine regulation. The hypothesis that increase of cytokine mRNA expression is part of host reaction in pulpitis was corroborated by our observation. 相似文献
18.
Kambris Z Brun S Jang IH Nam HJ Romeo Y Takahashi K Lee WJ Ueda R Lemaitre B 《Current biology : CB》2006,16(8):808-813
Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bacteria or fungi . In the present study, we have used an in vivo RNAi strategy to inactivate 75 distinct Drosophila SP genes. We then screened this collection for SPs regulating the activation of the Toll pathway by gram-positive bacteria. Here, we report the identification of five novel SPs that function in an extracellular pathway linking the recognition proteins GNBP1 and PGRP-SA to Spz. Interestingly, four of these genes are also required for Toll activation by fungi, while one is specifically associated with signaling in response to gram-positive bacterial infections. These results demonstrate the existence of a common cascade of SPs upstream of Spz, integrating signals sent by various secreted recognition molecules via more specialized SPs. 相似文献
19.
A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells. 总被引:2,自引:8,他引:2
下载免费PDF全文

Poxviruses are unique among viruses in encoding members of the serine proteinase inhibitor (serpin) superfamily. Orthopoxviruses contain three serpins, designated SPI-1, SPI-2, and SPI-3. SPI-1 encodes a 40-kDa protein that is required for the replication of rabbitpox virus (RPV) in PK-15 or A549 cells in culture (A. N. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:305-314, 1994). Examination of nonpermissive human A549 cells infected with an RPV mutant disrupted in the SPI-1 gene (RPV delta SPI-1) suggests there are no gross defects in protein or DNA synthesis. The proteolytic processing of late viral structural proteins, a feature of orthopoxvirus infections associated with the maturation of virus particles, also appears relatively normal. However, very few mature virus particles of any kind are produced compared with the level found in infections with wild-type RPV. Morphological examination of RPV delta SPI-1-infected A549 cells, together with an observed fragmentation of cellular DNA, suggests that the host range defect is associated with the onset of apoptosis. Apoptosis is seen only in RPV delta SPI-1 infection of nonpermissive (A549 or PK-15) cells and is absent in all wild-type RPV infections and RPV delta SPI-2 mutant infections examined to date. Although the SPI-1 gene is expressed early, before DNA replication, the triggering apoptotic event occurs late in the infection, as RPV delta SPI-1-infected A549 cells do not undergo apoptosis when infections are carried out in the presence of cytosine arabinoside. While the SPI-2 (crmA) gene, when transfected into cells, has been shown to inhibit apoptosis, our experiments provide the first indication that a poxvirus serpin protein can inhibit apoptosis during a poxvirus infection. 相似文献