首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of lateral flow biodetectors: competitive format   总被引:1,自引:0,他引:1  
Lateral flow (LF) biodetectors facilitate low-cost, rapid identification of various analytes. The LF cell consists of a porous membrane containing immobilized ligands at various locations. Through the action of capillary forces, a mixture of sample and reporter particles is transported to the ligand sites, where the target analytes and the reporters bind to the immobilized ligand. The concentration of the reporters is measured with a scanner. A mathematical model for two different competitive assays is constructed and used to study the performance of LF devices under various operating conditions. The model predicts the signal magnitude as a function of target analyte, reporter, and ligand concentrations, reaction rate constants, and flow rate. The predictions are compared and qualitatively agree with experimental data. The model provides insights into various experimental observations. Furthermore, the model can be used to optimize the performance of LF devices and to inexpensively and rapidly test the system under various operating conditions.  相似文献   

2.
In this study, an up‐converting phosphor technology‐based lateral‐flow (UPT‐LF) assay was developed to detect severe fever with thrombocytopenia syndrome virus (SFTSV) total antibodies rapidly and specifically. SFTSV recombinant N protein (SFTSV‐rNP) was coated on analytical membrane for sample capture, up‐converting phosphor (UCP) particles were used as the reporter, the luminescence emitted by UCP particles was converted to a measurable signal by a biosensor. The performance of UPT‐LF assay was evaluated by testing 302 field serum samples by ELISA (enzyme‐linked immunosorbent assay), Western blotting and UPT‐LF assay. UPT‐LF assay exhibited a lower detection limit than ELISA, and a satisfied level of agreement was exhibited by Kappa statistics (Kappa coefficient = 0.938). Considering Western blotting as the reference for comparison, the sensitivity and specificity of UPT‐LF assay could reach 98.31% and 100%. UPT‐LF assay showed no specific reaction with hantavirus total serum antibodies, which avoids the misdiagnosis of SFTSV from hantavirus that could cause similar clinical symptoms. UPT‐LF assay was able to achieve acceptable results within 15 min and needed only 10 μL sample for each test. As a whole, UPT‐LF assay is a candidate method for on‐site surveillance of SFTSV total antibodies owing to its excellent sensitivity, specificity, stability, easy operation and for being less time consuming.  相似文献   

3.
Lateral flow (LF) immunoassays (i.e., immunochromatographic assays) have traditionally been applied to analytes that do not require very high analytical sensitivity or quantitative results. The selection of potential analytes is often limited by the performance characteristics of the assay technology. Analytes with more demanding sensitivity requirements call for reporter systems enabling high analytical sensitivity. In this study, we systematically compared the performance of fluorescent europium(III) [Eu(III)] chelate dyed polystyrene nanoparticles and colloidal gold particles in lateral flow assays. The effect of time-resolved measurement mode was also studied. Because binder molecules used in immunoassays might not behave similarly when conjugated to different reporter particles, two model assays were constructed to provide reliable technical comparison of the two reporter systems. The comparative experiment demonstrated that the fluorescent nanoparticles yielded 7- and 300-fold better sensitivity compared with colloidal gold in the two test systems, respectively. Although the two reporter particles may induce variable effects using individual binders, overall the high specific activity of Eu(III) nanoparticles has superior potential over colloidal gold particles for the development of robust high-sensitivity bioaffinity assays.  相似文献   

4.
Many quantitative and semiquantitative lateral flow (LF) assays have been introduced for clinical analytes such as biomarkers for cancer or acute myocardial infarction (AMI). Various detection technologies involving quantitative analyzing devices have been reported to have sufficient analytical sensitivity and quantification capability for clinical point-of-care tests. Fluorescence-based detection technologies such as quantum dots, Eu(III) nanoparticles, and photon-upconverting nanoparticles (UCNPs) have been introduced as promising solutions for point-of-care devices because of their high detectability by optical sensors. Lateral flow assays can be used for various sample types, e.g., urine, saliva, cerebrospinal fluid, and blood. This study focuses on the properties of serum and plasma because of their relevance in cancer and AMI diagnostics. The limit of detection was compared in LF assays having Eu(III) nanoparticles or UCNPs as reporters and the antibody configurations for two different analytes (prostate-specific antigen and cardiac troponin I (cTnI)). The results indicate a significant effect of anticoagulants in venipuncture tubes. The samples in K3EDTA tubes resulted in significant interference by decreased reporter particle mobility, and thus the limit of detection was up to eightfold less sensitive compared to serum samples. Despite the matrix interference in the cTnI assay with UCNP reporters, limits of detection of 41 ng/L with serum and 66 ng/L with the Li-heparin sample were obtained.  相似文献   

5.
An earlier reported laboratory assay, performed in The Netherlands, to diagnose Schistosoma infections by detection of the parasite antigen CAA in serum was converted to a more user-friendly format with dry reagents. The improved assay requires less equipment and allows storage and worldwide shipping at ambient temperature. Evaluation of the new assay format was carried out by local staff at Ampath Laboratories, South Africa. The lateral flow (LF) based assay utilized fluorescent ultrasensitive up-converting phosphor (UCP) reporter particles, to be read by a portable reader (UPlink) that was also provided to the laboratory. Over a period of 18 months, about 2000 clinical samples were analyzed prospectively in parallel with a routinely carried out CAA–ELISA. LF test results and ELISA data correlated very well at CAA concentrations above 300 pg/mL serum. At lower concentrations the UCP–LF test indicates a better performance than the ELISA. The UCP–LF strips can be stored as a permanent record as the UCP label does not fade. At the end of the 18 months testing period, LF strips were shipped back to The Netherlands where scan results obtained in South Africa were validated with different UCP scanning equipment including a novel, custom developed, small lightweight UCP strip reader (UCP-Quant), well suited for testing in low resource settings.  相似文献   

6.
Hollow fiber ultrafiltration and microfiltration membranes are examined for the processing of isoelectric soya protein precipitate suspensions. A model based on the various resistances to permeate flux is used to describe membrane performance. The main resistance to permeate flux is due to the interaction between the active membrane and the soluble and precipitated protein; that is, as compared with resistances due to the active membrane itself or the membrane support structure, or arising from concentrated soluble or precipitated protein layers over the membrane surface. Soluble protein rejection and precipitate mean particle diameter are correlated with observed values of this main resistance.In contract to the ultrafiltration of soluble proteins, the flux rates observed when processing protein precipitate suspensions under a similar range of operating conditions do not approach a limiting value with increased transmembrane pressure. At high protein concentrations, greater flux rates may be achieved for precipitated as compared with soluble proteins. The use of a microfiltration membrane does not give further improvement in flux rate; this may be attributed to problems of pore fouling with precipitate particles.  相似文献   

7.
Up-converting Phosphor Technology (UPT) particles were used as reporters in lateral-flow (LF) assays to detect single-stranded nucleic acids. The 400-nm phosphor particles exhibit strong visible luminescence upon excitation with infrared (IR) light resulting in the total absence of background autofluorescence from other biological compounds. A sandwich-type hybridization assay was applied using two sequence-specific oligonucleotides. One of the oligonucleotides probes was covalently bound to the UPT particle (reporter) for direct labeling and detection, whereas the second oligonucleotide probe contained biotin for capture by avidin during LF. The whole procedure of hybridization, UPT-LF detection, and analysis required a minimum time of 20 min. Moreover, aiming at minimal equipment demands, the hybridization conditions were chosen such that the entire assay could be performed at ambient temperature. During lateral flow, only targets hybridized to both capture and detection oligonucleotide were trapped and detected at an avidin capture line on the LF strip. Analysis (IR scanning) of the strips was performed in an adapted microtiter plate reader provided with a 980-nm IR laser for excitation of the phosphor particles (a portable reader was also available). Visible luminescence was measured and presented as relative fluorescence units (RFU) allowing convenient quantitation of the phosphor signal. With the assay described here as little as 0.1 fmol of a specific single-stranded nucleic acid target was detected in a background of 10 microg fish sperm DNA.  相似文献   

8.
We report the construction of a cell-based fluorescent reporter for anthrax lethal factor (LF) protease activity using the principle of fluorescence resonance energy transfer (FRET). This was accomplished by engineering an Escherichia coli cell line to express a genetically encoded FRET reporter and LF protease. Both proteins were encoded in two different expression plasmids under the control of different tightly controlled inducible promoters. The FRET-based reporter was designed to contain a LF recognition sequence flanked by the FRET pair formed by CyPet and YPet fluorescent proteins. The length of the linker between both fluorescent proteins was optimized using a flexible peptide linker containing several Gly-Gly-Ser repeats. Our results indicate that this FRET-based LF reporter was readily expressed in E. coli cells showing high levels of FRET in vivo in the absence of LF. The FRET signal, however, decreased five times after inducing LF expression in the same cell. These results suggest that this cell-based LF FRET reporter may be used to screen genetically encoded libraries in vivo against LF.  相似文献   

9.
Suspensions of insoluble polyelectrolyte complexes of dextran sulfate (DS) of different molecular masses with lactoferrin (LF) have been fabricated and characterized. The encapsulation efficiency of LF and DS in a complex at pH 3.0 and 4.0 was assessed, and particles were characterized by their sizes and ζ-potential. The complexes formed at pH 3.0 differed by a higher stability level. The interaction with DS resulted in a twofold decrease in the antioxidant activity of LF, although the formation of complexes was not accompanied by conformational changes in LF molecules according to IR-spectrometry data. Microencapsulation was carried out by treating the suspensions with negatively charged LF-DS complexes with protamine and chitosane solutions with different molecular masses. The composition, size, and the ζ-potential of interaction products were assessed which allowed us to select the conditions for the preparation of pH-sensitive polyelectrolyte microparticles loaded with LF which would be able to gradually release glycoprotein under conditions that model the passage through the gastrointestinal tract of humans. These data indicate that this approach is promising for the creation of pH-sensitive biopolyelectrolytes suitable for oral administration of LF to target cells.  相似文献   

10.
The performance of a vortex flow reactor (VFR) with suspended particles for protein adsorption was studied under varying operating conditions, and resin volume fractions. The VFR behaved as an expanded bed in the regimen of laminar vortices flow. Streamline DEAE was used for bovine serum albumin (BSA) adsorption. Expanded bed VFR experiments were performed with varying geometric aspect ratios (14.6, 28.6 and 40.0) and axial superficial velocity (100–300 cm h−1) to investigate their influence on productivity and dynamic capacity. The results are compared with literature data on an expanded bed column (EBC). Adsorption breakthrough curves were fitting to a simple two-parameter model.  相似文献   

11.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
The separation and concentration of L-phenylalanine (L-Phe) using a supported liquid membrane (SLM) is investigated. A cation complex agent, di-2-ethylhexyl phosphoric acid (D2EHPA), is used as a carrier in the SLM with n-Heptane as a solvent. The reaction order and equilibrium constant in the formation reaction of L-Phe-carrier complex are obtained from the extraction experment. A mathematical model for a carrier mediated counter transport process is proposed to estimate the diffusion coefficient of L-Phe-carrier complex in the liquid membrane. Permeation experiments of L-Phe using a SLM are performed under various operating conditions and optimum conditions for the transport of L-Phe are obtained. Concentration of L-Phe in the strip phase against its concentration is observed. Transport rate of glucose through liquid membrane is less than that of L-Phe in the competitive transport of L-Phe and glucose. And the existence of glucose reduced the transport rate of L-Phe. The performance of separation with continuous strip phase is increased due to the dilution effect in the strip phase.  相似文献   

13.
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.  相似文献   

14.
Performance of a cardiac assist device pumping chamber in counterpulsation was evaluated using numerical simulations of the unsteady, three-dimensional flow inside the chamber and an analytical model of the force required to eject and fill the chamber. The wall shear stress within the device was similarly computed and modeled. The analytical model was scaled to match the numerical results and then used to predict performance at physiological operating conditions. According to these models for a stroke volume of 70 ml, between 0.4 and 1.0 W is required for counterpulsation at a frequency of 1.33 Hz against a restorative spring, depending on the spring constant chosen. The power and the maximum force calculated are within the ranges a trained skeletal muscle is capable of providing. Shear stress predictions show that platelet activation in the absence of surface effects and hemolysis due to high shear are unlikely to occur with this design. Furthermore, vortices that develop in the chamber during filling are predicted to increase blood mixing and provide favorable washing of the chamber walls. A computational-analytical approach such as this may have potential to aid rapid performance evaluation of new devices and streamline the design optimization process.  相似文献   

15.
The behavior of an enzyme/membrane system containing urease is studied when an external electric field is applied. The device using a potential difference across the enzyme/membrane system is first described. Optimal operating conditions with respect to substrate concentration, ionic strength and pH are studied. Possible mechanisms of the change in membrane activity by electric field are discussed.  相似文献   

16.
A method for affinity membrane column design, based on the analytical solution of the Thomas model for frontal analysis in membrane column adsorption, was developed. The method permits to find the operating conditions to reach a 93.5% of the column capacity as operating capacity, using a sharpness restriction for the system breakthrough curve. The solution of the model is presented in a graphic form and can be used in a wide range of operational conditions, provided that four design restrictions are fulfilled. The application of the method was illustrated using experimental data and a simple procedure. The implications of the results on the design and optimiztion of affinity membrane chromatographic columns are discussed.  相似文献   

17.
18.
19.
讨论了膜骨架栅栏模型和系链模型解释膜蛋白侧向限制扩散时的困难。在蛋白质一维约束扩散实验现象的基础上,提出了膜蛋白的两维约束扩散模型,并用这个模型讨论了膜蛋白的多种运动模式。  相似文献   

20.
Neurocysticercosis is a frequent parasitic infection of the human brain, occurring in most of the world, and requires imaging of the brain to diagnose. To determine the burden of disease and to simplify diagnosis, a field-friendly rapid lateral flow (LF) based antibody screening test was developed. The assay utilizes novel nano-sized up-converting phosphor (UCP) reporter particles in combination with a portable lightweight analyzer and detects antibodies in serum samples reactive with bacterial-expressed recombinant (r) T24H, a marker for detecting neurocysticercosis cases. Three sequential flow steps allow enrichment of antibodies on the Test (T) line and consecutive binding of protein-A coated UCP reporter particles. Antibody binding was determined by measuring 550 nm emission after excitation of the UCP label with a 980 nm infrared (IR) diode. Clinical sensitivity and specificity of the assay to detect cases of human neurocysticercosis with 2 or more viable brain cysts were 96% and 98%, respectively, using a sample set comprised of sera from 63 confirmed cases and 170 healthy parasite-naïve non-endemic controls. In conclusion: Proof-of-principle, of a rapid UCP-LF screening assay for neurocysticercosis was demonstrated. The assay utilized bacterial-expressed rT24H as a potential alternative for baculovirus-expressed rT24H. Performance of the UCP-LF assay was excellent, although further studies need to confirm that bacterial expressed antigen can entirely replace previously used baculovirus antigen. In addition, the increasing availability of commercial sources for UCP reporter materials as well as the accessibility of affordable semi-handheld scanners may allow UCP-based bioanalytical systems for point-of-care to evolve at an even faster pace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号