首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA is a potent inhibitor of protein synthesis in rabbit reticulocyte lysates. Three lines of evidence suggest that at least part of this inhibitory activity is due to activation of a nuclease which degrades mRNA: (1) In the presence of emetine reticulocyte polysomes are partially degraded to structures containing 1–3 ribosomes; (2) 34S Mengo-virus RNA is degraded to fragments sedimenting at less than 18S; (3) The template activity of globin mRNA extracted from the lysates is reduced by 90% when compared to appropriate controls. The ability of double-stranded RNA to activate a nuclease in the reticulocyte system is very similar to that observed in extracts from interferon treated cells and probably involves formation of the unusual oligonucleotide pppA2′ p5′ A2′ p5′ A.  相似文献   

2.
Addition of nanomolar concentration of the phorbol ester 12-O-tetradecanoyl phorbol 13-acetate (TPA) to the human promyelocytic HL-60 leukemia cells is associated with a cessation of cellular proliferation and a subsequent differentiation into macrophage-like cells. Because the growth rate of mammalian cells is tightly coupled to the functions of the protein synthetic machinery, we have examined whether TPA induces a change in HL-60 translational functions. Addition of control HL-60 cell extracts to rabbit reticulocyte lysates results in a pronounced inhibition of protein synthesis, while TPA-treated HL-60 cell extracts are significantly less inhibitory. The reduction in TPA-induced translational inhibitory activity can be observed after a 3-6-h treatment and reaches a maximum after 24 h. Fractionation of control cell extracts on DEAE-cellulose columns reveals two inhibitory activities, eluting at 100 and 350 mM KCl, respectively. The DEAE-100 inhibitor(s) is further resolved into two activities by heparin-agarose column chromatography (HEP-100 and HEP-250). TPA treatment of HL-60 cells for 48 h completely eliminates the HEP-250 inhibitory activity and reduces the HEP-100 and the DEAE-350 inhibitory activities by 50 and 25%. Inhibition of protein synthesis in rabbit reticulocyte lysates by DEAE-100 inhibitory activities can be partially reversed by the addition of globin mRNA while translational inhibition by DEAE-350 inhibitor(s) can be reversed by addition of eukaryotic initiation factor (eIF) 2 or fructose 6-phosphate. The DEAE-100 inhibitor(s) causes extensive degradation of radioactive polynucleotides while the DEAE-350 inhibitor(s) is capable of phosphorylating both the alpha- and the beta-subunits of the highly purified rabbit reticulocyte initiation factor eIF-2. These data show that the DEAE-100 inhibitor(s) contains a nuclease while the DEAE-350 inhibitor(s) is associated with eIF-2 alpha and eIF-2 beta protein kinases.  相似文献   

3.
In rabbit reticulocyte lysates the addition of exogenous 2-5A leads after 10-20 minutes to the inhibition of protein synthesis. This inhibition can be blocked by rat antiserum to 2-5A. In intact ribosomes the ribosomal RNA is cleaved after 2-5A addition, but this cleavage is not in correlation with the protein synthesis shutoff. Ribosomal 5S RNA and 5,8S RNA are not cleaved even after several hours of incubation with 2-5A. The degradation of polysome associated mRNA correlates with the protein synthesis inhibition as revealed by Northern blot hybridization of globin mRNA with 32P-labelled p beta G plasmid. The addition of 2-5A antiserum to the rabbit reticulocyte lysate also inhibits the degradation of polysome bound globin mRNA.  相似文献   

4.
An initiation factor from rabbit reticulocytes can overcome the block in initiation of protein synthesis occurring in reticulocyte lysates when exogenous hemin is not present, or when double-stranded RNA is added. This factor has been identified with IF-MP, an initiation factor capable of forming ternary complexes with GTP and methionyl-tRNAF. Initiation factor IF-M3 by itself is unable to overcome the block in initiation, but appears to stimulate this activity of IF-MP. IF-MP binds to single-stranded R17 RNA as well as to double-stranded RNA, while IF-M3 only binds to double-stranded RNA. The protein synthetic activity of IF-MP is sensitive to N-ethylmaleimide, but its ability to bind RNA is resistant.  相似文献   

5.
Heme-deficiency and double-stranded RNA (dsRNA) activate distinct cyclic 3':5'-AMP independent protein kinases (HRI and dsI, respectively) in rabbit reticulocyte lysates. These kinases inhibit protein synthesis by phosphorylating the 38,000 daltons (38K) subunit of the initiation factor eIF-2 (eIF-2 alpha). Using separation techniques to obtain a reticulocyte enriched fraction and reticulocyte-free erythrocytes, we have prepared lysates of these fractions from normal human whole blood. Human reticulocyte-enriched lysates contain the hemin-regulated and dsRNA-dependent protein kinases which inhibit protein synthesis and which phosphorylate rabbit eIF-2 alpha. An endogenous 38K polypeptide which co-migrates with rabbit eIF-2 alpha is also phosphorylated. In contrast, human mature erythrocytes contain little or no heme-regulated or dsRNA-dependent eIF-2 alpha kinase activities which are inhibitory of protein synthesis.  相似文献   

6.
7.
A cAMP-indepedent protein kinase (P38 kinase) from embryonic chicken muscle with ability to phosphorylate a 38,000 molecular weight polypeptide and to bind to RNAs has been further characterized. An approximately 2000-fold purification of this enzyme was achieved by a combination of affinity and ion-exchange chromatography. Our studies indicate that this protein kinase can not phosphorylate the small subunit of rabbit reticulocyte initiation factor eIF-2 in the presence of its normal endogenous substrate, nor is it activated over a wide range of concentrations of double-stranded RNA. This P38 kinase is, therefore, distinct from the hemin-regulated translational inhibitor of protein synthesis in rabbit reticulocytes and from the interferon-induced protein kinase identified In several systems.  相似文献   

8.
The translation of poliovirus RNA in rabbit reticulocyte lysate was examined. Translation of poliovirus RNA in this cell-free system resulted in an electrophoretic profile of poliovirus-specific proteins distinct from that observed in vivo or after translation in poliovirus-infected HeLa cell extract. A group of proteins derived from the P3 region of the polyprotein was identified by immunoprecipitation, time course, and N-formyl-[35S]methionine labeling studies to be the product of the initiation of protein synthesis at an internal site(s) located within the 3'-proximal RNA sequences. Utilization of this internal initiation site(s) on poliovirus RNA was abolished when reticulocyte lysate was supplemented with poliovirus-infected HeLa cell extract. Authentic P1-1a was also synthesized in reticulocyte lysate, indicating that correct 5'-proximal initiation of translation occurs in that system. We conclude that the deficiency of a component(s) of the reticulocyte lysate necessary for 5'-proximal initiation of poliovirus protein synthesis resulted in the ability of ribosomes to initiate translation on internal sequences. This aberrant initiation could be corrected by factors present in the HeLa cell extract. Apparently, under certain conditions, ribosomes are capable of recognizing internal sequences as authentic initiation sites.  相似文献   

9.
Epstein-Barr virus encodes two small RNAs, EBER-1 and -2, that are abundantly expressed in latently infected cells. Recent evidence suggests a role for EBER-1 in regulation of translation since this RNA is able to prevent the inhibition of protein synthesis by double-stranded RNA in rabbit reticulocyte lysates. We show here that EBER-1 that has been synthesized in vitro forms a complex with the dsRNA-activated inhibitor of protein synthesis DAI, a protein kinase that specifically phosphorylates polypeptide chain initiation factor eIF-2. Gel retardation assays and UV crosslinking experiments indicate that complex formation is specific for EBER-1 and requires the presence of some secondary structure in the molecule. RNA competition studies show that EBER-1-DAI complex formation is not inhibited in the presence of other small RNA species, heparin or the synthetic double-stranded RNA, poly(I).poly(C). SDS gel analysis reveals the existence of two forms of the crosslinked complex, of 64-68kDa and 46-53kDa, both of which are recognized by anti-DAI antibodies in immunoprecipitation experiments. These data suggest that EBER-1 regulates protein synthesis through its ability to interact with DAI.  相似文献   

10.
Double-stranded RNA (dsRNA) inhibits protein synthesis initiation in rabbit reticulocyte lysates by the activation of a latent dsRNA-dependent cAMP-independent protein kinase which phosphorylates the α-subunit of the eukaryotic initiation factor eIF-2. In this study, we describe a dsRNA-like component which is present in preparations of HeLa mRNA (poly A+) isolated from total cytoplasmic RNA. The inhibitory species in the HeLa cytoplasmic mRNA was detected by (a) its ability to inhibit protein synthesis with biphasic kinetics in reticulocyte lysates translating endogenous globin mRNA, and (b) by the inefficient translation of HeLa cytoplasmic mRNA in a nuclease-treated mRNA-dependent reticulocyte lysate. The inhibitory component was characterized as dsRNA by several criteria including (i) the ability to activate the lysate dsRNA-dependent eIF-2α kinase (dsI); (ii) the prevention of both dsI activation and inhibition of protein synthesis by high levels of dsRNA or cAMP; (iii) the reversal of inhibition by eIF-2; and (iv) the inability to inhibit protein synthesis in wheat germ extracts which lack latent dsI. By the same criteria, the putative dsRNA component(s) appears to be absent from preparations of HeLa mRNA isolated exclusively from polyribosomes.  相似文献   

11.
Fructose 6-phosphate (1.4 mM – 3.0 mM) effectively prevents the inhibition of protein synthesis in unfractionated rabbit reticulocyte lysates by the presence of double-stranded RNA (poly rI:poly rC, 1 μg/ml). Glucose 6-phosphate, but not fructose 1,6-diphosphate, is equally as effective as fructose 6-phosphate. The data suggest that fructose 6-phosphate prevents the formation of a protein synthesis inhibitor induced by double-stranded RNA.  相似文献   

12.
Molecular cloning and characterization of cDNA for human myeloperoxidase   总被引:8,自引:0,他引:8  
Partial amino acid sequence of human myeloperoxidase was determined, and a 41-base oligonucleotide containing deoxyinosines at four positions was chemically synthesized. By using the oligonucleotide as a probe, cDNA clones for human myeloperoxidase were isolated from a cDNA library constructed with mRNA from human promyelocytic leukemia HL-60 cells. One of the clones containing a 2.6-kilobase insert was subjected to nucleotide sequence analysis. The sequence was found to contain an open reading frame, 2,235 nucleotides coding for a protein of 745 amino acids with a calculated Mr of 83,868. The heavy chain of myeloperoxidase, consisting of 467 amino acids, was located on the COOH terminus half of the protein. The RNA specified by the cDNA was prepared using SP6 RNA polymerase and translated in rabbit reticulocyte lysates, and the product was identified as human myeloperoxidase by immunoprecipitation with rabbit anti-human myeloperoxidase antibody. By Northern hybridization analysis of RNA from leukemic cells, it was shown that myeloperoxidase mRNA is abundantly expressed in human promyelocytic HL-60 and mouse myeloid leukemia NFS-60 cells. Furthermore, the results of Southern hybridization analysis of human genomic DNA suggest that there are one or two genes for myeloperoxidase in the human haploid genome.  相似文献   

13.
A heat-stable, low-molecular-weight inhibitor of protein synthesis is formed on incubation of haemin-supplemented rabbit reticulocyte lysates with ATP and double-stranded RNA (dsRNA). It inhibits the translation of both added encephalomyocarditis virus RNA (EMC RNA) and endogeneous messenger RNA in reticulocyte lysates and mouse L-cell extracts. The enzyme responsible for the synthesis of the inhibitor binds to dsRNA and can be purified on a column of poly(I).poly (C) bound to an inert support. The highly purified enzyme in its stable column-bound state can be conveniently employed to synthesise the inhibitor and to label it with [3H]ATP, or [alpha-32P]ATP or [gamma-32P]ATP as substrate. The radioactive inhibitor synthesised in this way with material from rabbit reticulocyte lysates shows the same spectrum of resistance and sensitivity to alkali and a variety of enzymes as corresponding material similarly synthesised with extracts from interferon-treated mouse L-cells. The inhibitors from the two systems have comparable absorbance spectra, are chromatographically and electrophoretically indistinguishable and are apparently identical in specific activity in the inhibition of protein synthesis in the cell-free system. The inhibitor is also formed on inhibition of protein synthesis by dsRNA in reticulocyte lysates. On comparison of the spectrum of polypeptide products synthesised in response to EMC RNA in the reticulocyte lysate, the effects of the inhibitor or dsRNA were similar: a distinctly different effect was obtained with the haemin-controlled repressor, a known inhibitor of initiation. The significance of these results with respect to the mechanism of action of the inhibitor and its role in the inhibition observed in response to dsRNA is discussed.  相似文献   

14.
There are two inhibitors of protein synthesis which are related to the activity of interferon. One is a protein kinase which phosphorylates the α subunit of the eucaryotic initiation factor 2 (eIF-2). The other is an enzyme which synthesizes an unusual oligonucleotide that in turn activates a RNA endonuclease. In nucleated cells the synthesis of the inhibitors is induced by interferon but they must be activated in a subsequent lysate by double-stranded RNA (dsRNA). Rabbit reticulocytes, however, contain the inactive forms of the inhibitors in a constitutive manner and require only dsRNA activation. We report here the effect of dsRNA on protein synthesis and the generation of ribosomal eIF-2α kinase and heat-stable (oligonucleotide) inhibitory activity in human reticulocyte lysates. Our findings indicate that human reticulocytes, in contrast to rabbit reticulocytes, do not contain the interferon-related inhibitors of protein synthesis in a constitutive manner. Addition of dsRNA to the human reticulocyte cell-free system does not result in significant inhibition. Furthermore, no generation of ribosomal eIF-2α kinase or heatstable inhibitory activity could be detected. Direct addition of oligonucleotide or eIF-2α kinase (of rabbit origin), however, does result in inhibition of the human system. Thus, the ultimate inhibition mechanisms do appear operative in the human reticulocyte lysates. The differences between the rabbit and human systems may be due to either basic differences in the mechanism of interferon action or simply to variation in the history or maturity of the cells studied.  相似文献   

15.
The herpes simplex virus virion host shutoff (vhs) protein (UL41 gene product) is a component of the HSV virion tegument that triggers shutoff of host protein synthesis and accelerated mRNA degradation during the early stages of HSV infection. Previous studies have demonstrated that extracts from HSV-infected cells and partially purified HSV virions display vhs-dependent RNase activity and that vhs is sufficient to trigger accelerated RNA degradation when expressed as the only HSV protein in an in vitro translation system derived from rabbit reticulocytes. We have used the rabbit reticulocyte translation system to characterize the mode of vhs-induced RNA decay in more detail. We report here that vhs-dependent RNA decay proceeds through endoribonucleolytic cleavage, is not affected by the presence of a 5' cap or a 3' poly(A) tail in the RNA substrate, requires Mg(2+), and occurs in the absence of ribosomes. Intriguingly, sites of preferential initial cleavage were clustered over the 5' quadrant of one RNA substrate that was characterized in detail. The vhs homologue of pseudorabies virus also induced accelerated RNA decay in this in vitro system.  相似文献   

16.
17.
Cleavage of a viral polyprotein by a cellular proteolytic activity.   总被引:5,自引:4,他引:1       下载免费PDF全文
The 200,000-dalton polyprotein encoded by the bottom component RNA of cowpea mosaic virus was synthesized in rabbit reticulocyte lysates, and this in vitro-synthesized protein was isolated from the lysate reaction mixture by sucrose density gradient centrifugation. Incubation of the isolated polyprotein with buffer caused no change in the protein, but incubation with reticulocyte lysates or with fractionated lysate proteins resulted in cleavage of the protein into the expected cleavage products (32,000- and 170,000-dalton proteins). This finding indicated that reticulocytes contain a proteolytic activity that is needed for the primary cleavage reaction. A cleavage assay in which we used partially purified preparations showed that cleavage was an ATP-dependent reaction.  相似文献   

18.
红细胞分化因子是从兔子网织红细胞中提出的一个蛋白因子,它可以使多种癌细胞株的生长受到抑制[1].以早幼粒白血病细胞(HL-60)为材料,研究其被EDDF诱导过程中细胞内PTK,PTPP及它们底物磷酸化水平的变化.实验发现:部分纯化的EDDF对HL-60细胞生长有明显的抑制作用,经NBT还原和Giemsa染色,可见HL-60细胞被诱导出现排核.同时,细胞的PTK,PTPP酶活性有明显的变化,PTPP和PTK的底物蛋白在胞浆中酪氨酸蛋白磷酸化水平亦出现改变(但颗粒部分变化不明显).  相似文献   

19.
20.
The genome of the human delta hepatitis agent is a circular, highly structured single-stranded RNA lacking regular runs of RNA-RNA duplex longer than 15 bp. We have tested the ability of delta agent RNA to participate in reactions with a protein containing a motif which confers the ability to bind double-stranded RNA (dsRNA). Surprisingly, highly purified delta agent RNA preparations from which all traces of contaminating dsRNA have been removed activate PKR, the dsRNA-dependent protein kinase activity of mammalian cells (also known as DAI, P1-eIF-2, and p68 kinase). This behavior is in marked contrast to the interaction of PKR with a number of other highly structured viral single-stranded RNAs, which inhibit, rather than stimulate, activation of this kinase. PKR activation leads to inhibition of protein synthesis in the rabbit reticulocyte lysate system. Paradoxically, delta RNA failed to elicit the expected PKR-mediated inhibition of cell-free translation. Instead, delta RNA interfered with PKR activation and the translational block induced by dsRNA. We conclude that the interaction of PKR and delta agent RNA may represent a new category of protein-RNA interactions involving the dsRNA binding motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号