首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 4.6 kb DNA fragment was cloned from the DNA library of Streptomyces ansochromogenes using a partial DNA fragment located in the downstream of promoter-P_(TH4) as probe. The experiments revealed that this DNA fragment consists of saw D gene and a 1.4 kb Pvu Ⅱ fragment which can accelerate mycelium formation of S. ansochromogerms. The nucleofide sequence of 1.4 kb DNA fragment was determined and analysed; the result indicated that the fragment contains one complete open reading frame (ORF) which encodes a protein with 213 amino acids, and this gene was desiguated as samfR. The deduced protein has 36% amino acid identities and 52% amino acid similarities in comparison with that encoded by hppR gene, which is involved in the regulation of catabolism for 3-(3-hydroxyphenyl) propionate (3HPP) in Rhodococcus globerulus. The function of samfR gene was studied using strategy of gene disruption, and the resulting samfR mutant failed to form aerial hyphae and spores, its development and differentiation stopped  相似文献   

2.
A 4.6 kb DNA fragment was cloned from the DNA library ofStreptomyces ansochromogenes using a partial DNA fragment located in the downstream of promoter-PTH4 as probe. The experiments revealed that this DNA fragment consists ofsaw D gene and a 1.4 kbPvu II fragment which can accelerate mycelium formation ofS. ansochromogenes. The nucleotide sequence of 1.4 kb DNA fragment was determined and analysed; the result indicated that the fragment contains one complete open reading frame (ORF) which encodes a protein with 213 amino acids, and this gene was designated assamfR. The deduced protein has 36% amino acid identities and 52% amino acid similarities in comparison with that encoded byhppR gene, which is involved in the regulation of catabolism for 3-(3-hydroxyphenyl) propionate (3HPP) inRhodococcus globerulus. The function ofsamfR gene was studied using strategy of gene disruption, and the resultingsamfR mutant failed to form aerial hyphae and spores, its development and differentiation stopped at the stage of substrate mycelium in contrast with wild type strain. The results showed that thesamfR gene is closely related toS. ansochromogenes differentiation.  相似文献   

3.
Six nucleotides located in the region of translation start site of whiG were changed. whiG was amplified by PCR technique. Reformed sequences were determined. This gene was directly subcloned into expression vector pET11c containing strong T7 promoter, and the recombinant plasmid was introduced into E. coli BL21(DE3), which could be induced by IPTG to produce T7 RNA polymerase. The SDS-PAGE result showed that whiG highly expressed in E. coli BL21(DE3), and the yield of whiG product was about 20% of insoluble proteins in cell. whiG product (σwhiG) was further identified by Western blot hybridization after making its antibody. whiG gene was subcloned into Streptomyces plasmid pIJ6021, and then it was introduced into sporulation deficient mutant C71 from Streptomyces coelicolor. The result showed that C71 could restore sporulation and σwhiG has biological functions.  相似文献   

4.
A novel alkaline α-galactosidase gene is involved in rice leaf senescence   总被引:3,自引:0,他引:3  
We previously isolated and identified numerous senescence-associated genes (SAGs) in rice leaves. Here we characterized the structure and function of an SAG-Osh69 encoding alkaline α-galactosidase that belongs to a novel family of glycosyl hydrolases. Osh69 is a single-copy gene composed of 13 exons located on rice chromosome 8. The expression level of Osh69 is not only up-regulated during natural leaf senescence but also induced rapidly by darkness, hormones (methyl jasmonic acid, salicylic acid), and stresses (H2O2 and wounding). The recombinant Osh69 protein over-expressed in Escherichia coli has displayed optimal α-galactosidase activity at pH 8.0. The enzyme showed good hydrolytic activities towards α-1,6-galactosyl oligosaccharides and galactolipid digalactosyl diacylglycerol. Immunoelectron microscopic analysis demonstrates that Osh69 is specifically localized in the chloroplasts of senescing leaves. These findings strongly suggest an important role for Osh69 in the degradation of chloroplast galactolipids during leaf senescence. The nucleotide sequence data reported will appear in the GenBank Nucleotide Sequence Database under the accession number AF251068.  相似文献   

5.
Virginiae butanolide (VB) is a member of the γ-butyrolactone autoregulators and triggers the production of streptogramin antibiotics virginiamycin M1 and S in Streptomyces virginiae. A VB biosynthetic gene (barS2) was localized in a 10-kb regulatory island which controls the virginiamycin biosynthesis/resistance of S. virginiae, and analyzed by gene disruption/complementation. The barS2 gene is flanked by barS1, another VB biosynthetic gene catalyzing stereospecific reduction of an A-factor-type precursor into a VB-type compound, and barX encoding a pleiotropic regulator for virginiamycin biosynthesis. The deduced product of barS2 possessed moderate similarity to a putative dehydrogenase of Streptomyces venezuelae, encoded by jadW 2 located in similar gene arrangement to that in the regulatory island of S. virginiae. A barS2-disruptant (strain IC152), created by means of homologous recombination, showed no differences in growth in liquid medium or morphology on solid medium compared to a wild-type strain, suggesting that BarS2 does not play any role in primary metabolism or morphological differentiation of S. virginiae. In contrast, no initiation of virginiamycin production or VB production was detected with the strain IC152 until 18 h of cultivation, at which time full production of virginiamycin occurs in the wild-type strain. The delayed virginiamycin production of the strain IC152 was fully restored to the level of the wild-type strain either by the exogenous addition of VB or by complementation of the intact barS2 gene, indicating that the lack of VB production at the initiation phase of virginiamycin production is the sole reason for the defect of virginiamycin production, and the barS2 gene is of primary importance for VB biosynthesis in S. virginiae. An erratum to this article can be found at  相似文献   

6.
Li X  Hou L  Ma J  Liu Y  Zheng L  Zou X 《Molecular biology reports》2012,39(1):701-707
β-Catenin plays a crucial role in embryonic development and responds to the activation of several signal transduction pathways. In this paper, in order to understand the functions of β-catenin gene in early embryonic development of Artemia sinica, the complete cDNA sequence was cloned for the first time using RACE technology, then the sequence was analyzed by some bioinformatic methods. The expression of the β-catenin gene was investigated at various stages during the embryonic development using quantitative real-time PCR and immunohistochemistry assay. Through the investigation, the result of real-time PCR illustrated that β-catenin gene might relate to the response of A. sinica’s immune system and osmotic pressure system in early embryonic developmental stage. Meanwhile, Immunohistochemistry assay demonstrated that during embryonic development, β-catenin was mainly expressed in the cephalothorax. Besides, we discovered that β-catenin might not be a maternal gene in A. sinica, and this new phenomenon may explain a constitutive and regional expression during the early embryonic development of A. sinica.  相似文献   

7.
Tang XL  Deng LB  Li GL  Liu SM  Lin JR  Xie JY  Liu J  Kong FJ  Liang SD 《遗传》2012,34(2):198-207
Diabetic neuropathy (DN) is defined as the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes. The aim of this study is to screen differentially expressed genes in peripheral ganglia in early stage type Ⅱ experimental diabetic rats. We compared gene expression profiles of peripheral ganglia in type Ⅱ diabetic and nondiabetic rats based on Illumina? Sentrix? BeadChip arrays. The results showed that 158 out of a total of 12 604 known genes were significantly differentially expressed, including 87 up-regulated and 71 down-regulated genes, in diabetic rats compared with those in the nondiabetic rats. It is noted that some up-regulated genes are involved in the biological processes of neuronal cytoskeleton and motor proteins. In contrast, the down-regulated genes are associated with the response to virus\biotic stimulus\ other organism in diabetic rats. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the most significant pathway enriched in the changed gene set is metabolism (P < 0.001). These results indicated that metabolic changes in peripheral ganglia of diabetic rats could be induced by hyperglycemia. Hyperglycemia could change the expression of genes involved in neuronal cytoskeleton and motor proteins through immune inflammatory response, and then impair the structure and function of the peripheral ganglia.  相似文献   

8.
9.
Zhai J  Lee TH  Small DH  Aguilar MI 《Biochemistry》2012,51(6):1070-1078
Alzheimer's disease (AD) is a common form of dementia, which is characterized by the presence of extracellular amyloid plaques comprising the amyloid β peptide (Aβ). Although the mechanism underlying AD pathogenesis remains elusive, accumulating evidence suggests that the process of amyloid fibril formation is a surface-mediated event, which plays an important role in AD onset and progression. In this study, the mechanism of Aβ aggregation on hydrophobic surfaces was investigated with dual polarization interferometry (DPI), which provides real-time information on early stages of the aggregation process. Aggregation was monitored on a hydrophobic C18 surface and a polar silicon oxynitride surface. The DPI results showed a characteristic Aβ aggregation pattern involving a decrease in the density of Aβ at the surface followed by an increase in the thickness on the hydrophobic C18 chip. Most importantly, the DPI measurements provided unique information on the early stages of Aβ aggregation, which is characterized by the presence of initially slow nucleus formation process followed by exponential fibril elongation. The dimensions of the putative nucleus corresponded to a thickness of ~5 nm for both Aβ40 and Aβ42, which may represent about 10-15 molecules. The results thus support the nucleation-dependent polymerization model as indicated by the presence of a nucleation phase followed by an exponential growth phase. These results are the first reported measurements of the real-time changes in Aβ molecular structure during the early stages of amyloid formation at the nanometer level.  相似文献   

10.
The production of clavam metabolites has been studied previously in Streptomyces clavuligerus , a species that produces clavulanic acid as well as 4 other clavam compounds, but the late steps of the pathway leading to the specific end products are unclear. The present study compared the clavam biosynthetic gene cluster in Streptomyces antibioticus , chosen because it produces only 2 clavam metabolites and no clavulanic acid, with that of S.?clavuligerus. A cosmid library of S.?antibioticus genomic DNA was screened with a clavaminate synthase-specific probe based on the corresponding genes from S. clavuligerus, and 1 of the hybridizing cosmids was sequenced in full. A clavam gene cluster was identified that shows similarities to that of S.?clavuligerus but also contains a number of novel genes. Knock-out mutation of the clavaminate synthase gene abolished clavam production in S.?antibioticus, confirming the identity of the gene cluster. Knock-out mutation of a novel gene encoding an apparent oxidoreductase also abolished clavam production. A potential clavam biosynthetic pathway consistent with the genes in the cluster and the metabolites produced by S. antibioticus, and correspondingly different from that of S.?clavuligerus, is proposed.  相似文献   

11.
The α-lactalbumin (α-LA) plays a key role in lactose synthesis in mammary glands of domestic animals. Mutations in the α-LA gene are associated with the milk traits in dairy cattle. In our study, a novel SNP: NO_X06366: g.875 C > T was detected in 708 dairy goat individuals—268 of the Xinong Saanen breed and 440 of Guanzhong breed, which revealed a synonymous mutation in the exon 1 of α-LA gene. The Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) and sequencing techniques showed that there were three genotypes: CC, CT and TT. Moreover, the χ2-test showed that the genotype frequencies of the two breeds were in good agreement with the Hardy-Weinberg equilibrium (P > 0.05). The relationship of the polymorphism of dairy goat α-LA gene with the milk trait and the body size trait was revealed. Individuals with the CC genotype were significantly smaller at chest circumference than those with CT (P < 0.05) in both breeds. But the milk trait and other body size traits of the two dairy goat breeds had no significant association with genotypes studied.  相似文献   

12.
13.
Sex differences in motivation are apparent for the motivation to engage in sexual behavior, the motivation to take drugs of abuse, and the motivation to engage in parental behavior. In both males and females there is an increase in NAcc DA associated with motivated behaviors. Here it proposed that sex differences in the regulation of DA activity in the ascending mesolimbic projections may underlie sex differences in motivation. In particular, sex differences in the neuroendocrine regulation of this brain system play a role in the expression of sex differences in motivated behaviors. Here it is proposed that sexual differentiation of motivation is mediated, at least in part, by a novel mechanism in which ovarian hormones secreted at puberty in the female actively feminize the DA system.  相似文献   

14.
15.
16.
17.
Osteoimmunology is an emerging field of research focused on the interaction of the immune system and bone. In this study we demonstrate that human osteoblasts are sensitive to the immune cytokine interferon (IFN)β. Osteoblasts respond to IFNβ as shown by the induction of several known IFN target genes such as interferon-induced (IFI) proteins (IFIT1, IFI44L), interferon-stimulated gene factor 3 (ISGF3) complex and the induction of IFNβ itself. We demonstrated that IFNβ has severe inhibitory effects on mineralization of osteoblast-derived extracellular matrix (ECM). Analysis of the timing of the IFNβ effects revealed that committed osteoblasts in early stage of differentiation are most sensitive to IFNβ inhibition of mineralization. A single IFNβ treatment was as effective as multiple treatments. During the progress of differentiation osteoblasts become desensitized for IFNβ. This pinpoints to a complex pattern of IFNβ sensitivity in osteoblasts. Focusing on early osteoblasts, we showed that IFNβ decreased gene expression of ECM-related genes, such as type I Collagen (COL1A1), fibronectin (FN1), fibullin (FBLN1), fibrillin (FBN2), and laminin (LAMA1). Additionally, ECM produced by IFNβ-treated osteoblasts contained less collagen protein. IFNβ stimulated gene expression of osteopontin (OPN), annexin2 (ANXA2), and hyaluronan synthase 1 (HAS1), which are important factors in the adhesion of hematopoietic stem cells (HSC) in the HSC niche. In conclusion, IFNβ directly modifies human osteoblast function by inhibiting ECM synthesis eventually resulting in delayed bone formation and mineralization and induces a HSC niche supporting phenotype. These effects are highly dependent on timing of treatment in the early phase of osteoblast differentiation.  相似文献   

18.
Since the incorporation of mitochondria and chloroplasts (plastids) into the eukaryotic cell by endosymbiosis, genes have been transferred from the organellar genomes to the nucleus of the host, via an ongoing process known as endosymbiotic gene transfer. Accordingly, in photosynthetic eukaryotes, nuclear genes with cyanobacterial affinity are believed to have originated from endosymbiotic gene transfer from chloroplasts. Analysis of the Arabidopsis thaliana genome has shown that a significant fraction (2%-9%) of the nuclear genes have such an endosymbiotic origin. Recently, it was argued that 6-phosphogluconate dehydrogenase (gnd)-the second enzyme in the oxidative pentose phosphate pathway-was one such example. Here we show that gnd genes with cyanobacterial affinity also are present in several nonphotosynthetic protistan lineages, such as Heterolobosea, Apicomplexa, and parasitic Heterokonta. Current data cannot definitively resolve whether these groups acquired the gnd gene by primary and/or secondary endosymbiosis or via an independent lateral gene transfer event. Nevertheless, our data suggest that chloroplasts were introduced into eukaryotes much earlier than previously thought and that several major groups of heterotrophic eukaryotes have secondarily lost photosynthetic plastids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号