首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The nucleotide sequence of a 1.1 kbp BamHI fragment of the leek chloroplast DNA (Allium porrum., fam. Liliaceae) has been determined. The fragment contains the 3' part of the tRNAGly (UCC) gene and the tRNAArg (UCU) gene on the same strand, and the 3' end of the atpA gene encoding the CF1 ATPase α-subunit which is located on the opposite strand. The gene arrangement and nucleotide sequence of this fragment are similar to those of the corresponding region in the tobacco chloroplast DNA but differ significantly from what has been observed in other monocotyledonous plants such as wheat and rice, in which the region containing these genes has undergone intensive rearrangement.  相似文献   

7.
8.
9.
We have sequenced all mitochondrial tRNA genes from a patient with chronic progressive external ophthalmoplegia (CPEO) and mitochondrial myopathy, who had no detectable large mtDNA deletions. Direct sequencing failed to detect previously reported mutations and showed a heteroplasmic mutation at nucleotide 12,276 in the tRNA(Leu(CUN)) gene, in the dihydrouridine stem, which is highly conserved through the species during evolution. RFLP analyses confirmed that 18% of muscle mtDNA harbored the mutation, while it was absent from DNA of fibroblasts and lymphocytes of the proband and in 110 patients with other encephalomyopathies. To date, besides large and single nucleotide deletions, several point mutations on mitochondrial tRNA genes have been reported in CPEO patients, but only three were in the gene coding for tRNA(Leu(CUN)).  相似文献   

10.
11.
A unique multibranched cyclomaltooligosaccharide (cyclodextrin, CD) of 6(1),6(3),6(5)-tri-O-alpha-maltosyl-cyclomaltoheptaose [6(1),6(3),6(5)-tri-O-alpha-maltosyl-beta-cyclodextrin, (G(2))(3)-betaCD] was prepared. The physicochemical and biological properties of (G(2))(3)-betaCD were determined together with those of monobranched CDs (6-O-alpha-D-glucopyranosyl-alpha-cyclodextrin (G(1)-alphaCD), 6-O-alpha-D-glucopyranosyl-beta-cyclodextrin (G(1)-betaCD), and 6-O-alpha-maltosyl-beta-cyclodextrin (G(2)-betaCD)). NMR spectra of (G(2))(3)-betaCD were measured using various 2D NMR techniques. The solubility of (G(2))(3)-betaCD in water and MeOH-water solutions was extremely high in comparison with nonbranched betaCD and was about the same as that of the other monobranched betaCDs. The formation of an inclusion complex of (G(2))(3)-betaCD with stereoisomers (estradiol, retinoic acid, quinine, citral, and glycyrrhetinic acid) depends on the cis-trans isomers of guest compounds. The cis isomers of estradiol, retinoic acid, and glycyrrhetinic acid were included more than their trans isomers, while the trans isomers of citral and quinine fit more tightly than their cis isomers. (G(2))(3)-betaCD was the most effective host compound in the cis-trans resolution of glycyrrhetinic acid. Among the branched betaCDs, (G(2))(3)-betaCD exhibited the weakest hemolytic activity in human erythrocytes and showed negligible cytotoxicity in Caco-2 cells up to 200 microM. These results indicate unique characteristics of (G(2))(3)-betaCD in some biological responses of cultured cells.  相似文献   

12.
13.
14.
The tRNA(His) guanylyltransferase (Thg1) family of enzymes comprises members from all three domains of life (Eucarya, Bacteria, Archaea). Although the initial activity associated with Thg1 enzymes was a single 3'-to-5' nucleotide addition reaction that specifies tRNA(His) identity in eukaryotes, the discovery of a generalized base pair-dependent 3'-to-5' polymerase reaction greatly expanded the scope of Thg1 family-catalyzed reactions to include tRNA repair and editing activities in bacteria, archaea, and organelles. While the identification of the 3'-to-5' polymerase activity associated with Thg1 enzymes is relatively recent, the roots of this discovery and its likely physiological relevance were described ≈ 30 yr ago. Here we review recent advances toward understanding diverse Thg1 family enzyme functions and mechanisms. We also discuss possible evolutionary origins of Thg1 family-catalyzed 3'-to-5' addition activities and their implications for the currently observed phylogenetic distribution of Thg1-related enzymes in biology.  相似文献   

15.
16.
17.
18.
19.
20.
A tRNAPhe derivative carrying ethidium at position 37 in the anticodon loop has been used to study the effect of spermine on conformational transitions of the tRNA. As previously reported (Ehrenberg, M., Rigler, R. and Wintermeyer, W. (1979) Biochemistry 18, 4588–4599) in the tRNA derivative the ethidium is present in three states (T1–T3) characterized by different fluorescence decay rates. T-jump experiments show two transitions between the states, a fast one (relaxation time 10–100 ms) between T1 and T2, and a slow one (100–1000 ms) between T2 and T3. In the presence of spermine the fast transition shows a negative temperature coefficient indicating the existence of a preequilibrium with a negative reaction enthalpy. Spermine shifts the distribution of states towards T3, as does Mg2+, but the final ratio obtained with spermine is higher than with Mg2+, which we tentatively interpret to mean that spermine stabilizes one particular conformation of the anticodon loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号