首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATPase (EC 3.6.1.3) of Escherichia coli has been solubilized from two morphologically distinct membranes (vesicles and “ghosts”). Maximum ATPase release is attained with 3 mM EDTA in NH4HCO3, pH 9.0, and depends on protein concentration. After solubilization, the total enzyme activity is increased by 300% with respect to the membrane-bound enzyme. The released soluble ATPase accounts for more than 90% of this activity. Its specific activity is at least 10 times higher than the original value. Membrane treatment with buffers of various ionic strengths without EDTA and detergents is less selective. The molecular sieving properties (gel electrophoresis and Sephadex G-200 filtration) confirm the soluble nature of the preparation. A molecular weight close to 300 000 has been estimated for it.The membrane-bound ATPase is stimulated by trypsin by 70–100%. Most of the soluble ATPase maintains a trypsin activation of the same order. Exceptions are the preparations obtained at high protein dilution and extracted with sodium dodecyl sulphate and deoxycholate. The soluble ATPase is more labile than the membrane-bound enzyme. Its sensitivity to different temperatures depends upon protein concentration and pH during storage. Inactivation seems to result from dissociation and/or proteolysis.We suggest an ATPase link to the membrane through ionic divalent cation bridges. We also suggest that the enzyme possesses self-regulatory properties which would account for trypsin stimulation.  相似文献   

2.
The (H+,K+)ATPase-enriched microsomal fraction prepared from hog gastric mucosa by sucrose density gradient centrifugation was effectively solubilized with Emulgen, with apparent preservation of the enzyme activity, and then the ATPase was highly purified by polyethylene glycol fractionation, and Blue Sepharose CL-6B and amino-hexyl Sepharose chromatographies. The purified enzyme showed a single band, with an apparent molecular mass of approximately 94 kDa, on SDS-PAGE, and exhibited both K+-ATPase and K+-stimulated-p-nitrophenyl phosphatase (pNPPase) activities. The optimum pH for the ATPase activity was 7.0. Amino acid analysis of the purified enzyme showed that it contains a large amount of hydrophobic amino acid (42%) and a small amount of glucosamine and galactosamine. The rabbit antibody monospecific for the ATPase, in the Ouchterlony double immunodiffusion and Western blotting tests, markedly inhibited both the K+-ATPase and K+-pNPPase activities.  相似文献   

3.
Vesiculated fragments of transverse tubules (TT) and sarcoplasmic reticulum (SR) membranes were purified from heterogeneous microsomal membrane fractions of chicken breast muscle by a modification of an iterative calcium-oxalate loading technique. The distribution of ATPase activities were determined for the TT and SR and were compared to enriched fractions of sarcolemma (SL) membranes. The TT membranes were characterized by high rates of magnesium-stimulated ATPase (Mg-ATPase) and 5′-nucleotidase activities but were virtually devoid of calcium-stimulated, magnesium-dependent ATPase (Ca,Mg-ATPase) activity. Moderate levels of a latent sodium and potassium-stimulated ATPase (Na,K-ATPase) were observed for TT membranes when unmasked with valinomycin and monensin. In contrast to the behavior of TT membranes, highly purified SR membranes displayed an active Ca,Mg-ATPase but negligible Na,K-ATPase, Mg-ATPase, and 5′-nucleotidase activities. High levels of Na,K-ATPase and 5′-nucleotidase activities were observed for SL membranes; however, the SL displayed no appreciable Ca,Mg-ATPase and Mg-ATPase activities. The lack of significant Mg-ATPase activity in the SR and SL fractions suggested that the Mg-ATPase was uniquely associated with the TT membranes. The TT Mg-ATPase was further characterized by its pH and temperature dependences, and its sensitivity to pharmacologic agents. The Mg-ATPase of the TT was insensitive to inhibition by sodium azide and oligomycin in concentrations shown to exert maximum inhibition on the F1 ATPase of submitochondrial particles. The Mg-ATPase was also resistant to the effects of ouabain and orthovanadate in concentrations which abolished the Na,K-ATPase and Ca,Mg-ATPase activities of the SL and SR, respectively. The Mg-ATPase displayed temperature and pH optima (25 °C, pH 7.3) which were distinguishable from the Ca,Mg-ATPase (45 °, pH 7.0) of highly purified SR fractions but which were very similar to the temperature and pH dependencies of the mixed microsomal fractions (MMF) from which the TT membranes were derived. Similarities in the pH and temperature dependencies of the TT and MMF Mg-ATPases plus the absence of appreciable Mg-ATPase activity in highly purified SR membranes suggests that the “basic” Mg-ATPase often seen in crude SR fractions may originate from TT membrane contamination. The resistance of the TT Mg-ATPase to inhibition by the pharmacologic agents tested plus its unique temperature and pH dependences indicate that this ATPase is distinguishable from other ATPases and may, therefore, be of value as a specific biochemical marker for TT membranes.  相似文献   

4.
A plasma membrane-bound adenosine triphosphatase with specific activities up to 0.2 micromol min(-1) (mg protein)(-1) at 80 degrees C was detected in the thermoacidophilic crenarchaeon Acidianus ambivalens (DSM 3772). The enzymatic activity exhibited a broad pH-optimum in the neutral range with two suboptima at pH 5.5 and 7.0, respectively. Sulfite activation resulted in only one pH optimum at 6.25. In the presence of the divalent cations Mg2+ and Mn2+ the ATPase activity was maximal. Remarkably, the hydrolytic rates of GTP and ITP were substantially higher than for ATP. ADP and pyrophosphate were only hydrolyzed with small rates, whereas AMP was not hydrolyzed at all. Both activities could be weakly inhibited by the classical F-type ATPase inhibitor N,N'-dicyclohexylcarbodiimide, whereas azide had no influence at all. The classical inhibitor of V-type ATPases, nitrate, also exerted a small inhibitory effect. The strongly specific V-type ATPase inhibitor concanamycin A, however, showed no effect at all. The P-type ATPase inhibitor vanadate had no inhibitory effect on the ATPase activity at pH 7.0, whereas a remarkable inhibition at high concentrations could be observed for the activity at pH 5.5. Arrhenius plots for both membrane bound ATPase activities were linear up to 95 degrees C, reflecting the enormous thermostability of the enzyme.  相似文献   

5.
Knowledge of the mechanism of pressure-induced inactivation of microorganisms could be helpful in defining an effective, relatively mild pressure treatment as a means of decontamination, especially in combination with other physical treatments or antimicrobial agents. We have studied the effect of high pressure on Lactobacillus plantarum grown at pH 5.0 and 7.0. The classical inactivation kinetics were compared with a number of events related to the acid-base physiology of the cell, i.e., activity of F(0)F(1) ATPase, intracellular pH, acid efflux, and intracellular ATP pool. Cells grown at pH 5.0 were more resistant to pressures of 250 MPa than were cells grown at pH 7.0. This difference in resistance may be explained by a higher F(0)F(1) ATPase activity, better ability to maintain a DeltapH, or a higher acid efflux of the cells grown at pH 5.0. After pressure treatment at 250 MPa, the F(0)F(1) ATPase activity was decreased, the ability to maintain a DeltapH was reduced, and the acid efflux was impaired. The ATP pool increased initially after mild pressure treatment and finally decreased after prolonged treatment. The observations on acid efflux and the ATP pool suggest that the glycolysis is affected by high pressure later than is the F(0)F(1) ATPase activity. Although functions related to the membrane-bound ATPase activity were impaired, no morphological changes of the membrane could be observed.  相似文献   

6.
Density (age) separated rabbit erythrocytes were examined for differences in the activities of calmodulin and the protein inhibitor of membrane (Ca2+ + Mg2+)-ATPase (Lee, K.S. and Au, K.S. (1983) Biochim. Biophys. Acta 742, 54–62) as well as response of the ATPase towards these protein modulators. It was found that activities of the cytosol protein-bound and free inhibitor as well as membrane-bound inhibitor were higher in top (young) cells as compared to bottom (old) cells. Though the activity of the divalent cation associated membrane calmodulin pool was also higher in young cells, calmodulin activity in the erythrosol remained constant in cells from both age groups. The pool of membrane-associated inhibitor was shown to have greater influence on the ATPase than the membrane-associated calmodulin pool. The influence was more pronounced with inhibitor derived from old than from young cell membranes. Response of the young cell ATPase towards the protein inhibitor was better than the old cell enzyme at low inhibitor concentration. At higher inhibitor concentration, however, response of the ATPase from both cell types was similar.  相似文献   

7.
The distribution of PGE2 binding sites in four subcellular fractions (F1–F4) from porcine fundic mucosa obtained by gradient centrifugation was examined. Binding of HPGE2 to fractions F2–F4 was specific, dissociable, saturable and pH dependent. A significant degree of specific binding was not evident in F1. The Scatchard analysis of binding to F2 and F3 revealed heterogenous populations of binding sites with similar dissociation constants but greater concentrations of binding sites than was evident in the initial 30,000 xg homogenate protein. A single class of low affinity binding sites was evident in F4. The ratio of total: nonspecific binding was approximately equal in F2 and F3. The ratio was considerably smaller in F4. The activity of 5' nucleotidase the marker enzyme for plasma membranes followed this ratio. There was no correlation between the binding ratio and marker enzyme activities for mitochondrial membranes and endoplasmic reticulum. These data suggest that high affinity PGE2 binding sites occur predominantly on the plasma membrane from gastric mucosal tissue.  相似文献   

8.
Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.  相似文献   

9.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

10.
11.
At 0 to 20°C, the Ca2+-ATPase activity of the scallop sarcoplasmic reticulum (SR) was observed to be 7–60% of the peak activity at 30°C, while the ATPase activity of the rabbit SR was 0–7% of its peak at 55°C. The relative rabbit ATPase activity (0.7–7.0%) at 7–20°C became higher (6–15 times) and lower (1/4–1/2), respectively, by the solubilization of the rabbit ATPase with a detergent, dodecyloctaethylenglycol monoether, and by the reconstitution of the ATPase with asolectin (soybean lecithin). No activity at 0°C remained irrespective of these treatments. The relative scallop ATPase activity at 0–20°C was, however, scarcely affected by such solubilization and reconstitution. In contrast to the rabbit ATPase, the scallop ATPase seems to be capable of operating independently without the help of the membrane lipid at low temperature.  相似文献   

12.
ATPase activity of plasma membranes isolated from oat (Avena sativa L. cv. Goodfield) roots was activated by divalent cations (Mg2+ = Mn2+ > Zn2+ > Fe2+ > Ca2+) and further stimulated by KCl and a variety of monovalent salts, both inorganic and organic. The enzyme exhibited greater specificity for cations than anions. The presence of Mg2+ was necessary for KCl stimulation. Ca2+ was ineffective in replacing Mg2+ for activation of plasma membrane ATPase, but it did activate other membrane-bound ATPases. The pH optima for Mg2+ activation and KCl stimulation of the plasma membrane ATPase were 7.5 and 6.5, respectively.  相似文献   

13.
Summary Attempts to separate membrane fractions enriched in Cl-ATPase activity fromLimonium leaf microsomes were hampered because, it seemed, the microsomal membranes were aggregated in clumps. We found hemagglutination activity, specific for N-acetylgalactosamine and to a lesser extent galactose, in the soluble phase of the homogenate, and we were able to prevent membrane aggregation by adding galactose to the microsomes. We discovered that the Cl-ATPase activity of the microsomes was increased by galactose and to an even greater extent by N-acetylgalactosamine. We report that the Cl-ATPase binds to galactosamine-sepharose, from which it can be eluted in 0.1m galactose, i.e., the enzyme is associated with a saccharide-binding site similar to that of the hemagglutinins. This procedure results in a 100-fold enrichment of the Cl-ATPase activity and represents a new way of purifying a membrane-bound enzyme from a heterogeneous membrane preparation in one step. Enzyme isolated by affinity chromatography of Triton-solubilized membranes was essentially free of other ATPase and accounted for a substantial proportion (sometimes all) of the Cl-ATPase of the microsomes. This purified preparation of the enzyme shows N-acetylgalactosamine-specific hemagglutination activity. However, we can show that the Cl-ATPase and the hemagglutinins are different entities. Thus, material isolated in the same way from salt-free plants showed hemagglutination but not Cl-ATPase activity. Also, the hemagglutinins, but not the Cl-ATPase, will bind to galactosaminesepharose in the absence of ATP.This is the first report of enzyme activity associated with a carbohydrate receptorspecific protein. Possible roles for saccharide-binding in the control, assembly, and orientation of the chloride-pump are discussed.  相似文献   

14.
Light-harvesting complex-II (LHC-II) phosphatase activity has generally been examined in the intact thylakoid membrane. A recent report of peptide-phosphatase activity associated with the chloroplast stromal fraction (Hammer, M.F. et al. (1995) Photosynth Res 44: 107–115) has led to the question of whether this activity is capable of dephosphorylating membrane-bound LHC-II. To this end, heat-treated thylakoid membranes were examined as a potential LHC-II phosphatase substrate. Following incubation of the thylakoid membrane at 60°C for 15 min, the endogenous protein phosphatase and kinase activities were almost eliminated. Heat-inactivated phosphomembranes exhibited minimal dephosphorylation of the light harvesting complex-II. Peptide-phosphatase activities isolated from the thylakoid and stromal fraction were able to dephosphorylate LHC-II in heat-inactivated phosphomembranes. The stromal phosphatase showed highest activity against LHC-II at pH 9. Dephosphorylation of the LHC-II by the stromal enzyme was not inhibited by molybdate, vanadate or tungstate ions, but was partially inhibited by EDTA and a synthetic phosphopeptide mimicking the LHC-II phosphorylation site. Thus, the previously identified stromal phosphatase does appear capable of dephosphorylating authentic LHC-II in vivo.Abbreviations CPP chymotryptic phosphopeptides - LHC-II light-harvesting complex of Photosystem II - MP protein phosphatase fractionated from the thylakoid membrane - P2Thr synthetic phosphopeptide MRK-SAT(p)TKKVW - SP protein phosphatase fractionated from the stromal compartment  相似文献   

15.
Phosphomannomutase (PMM) activity was detected in the soluble cytoplasmic fraction of crude extracts of both mucoid (alginate-producing) and nonmucoid strains ofPseudomonas aeruginosa. The enzyme activity was concentrated and partially purified from cell extracts of mucoid strain V388 by precipitation with ammonium sulfate and by molecular exclusion chromatography. These preparations catalyzed the conversion of mannose 1-phosphate to mannose 6-phosphate in a coupled assay system that contained commercial phosphomannoisomerase, phosphoglucoisomerase, and glucose 6-phosphate dehydrogenase. Catalytic activity in this system was strictly dependent on the presence of glucose 1,6-diphosphate (apparent Km, 150 M) and exhibited a pH optimum of around 9 in Bicine-NaOH buffer. PMM exhibited an apparent Km of 60 M for mannose 1-phosphate, but concentrations greater than 150 M caused significant inhibition. Specific activities of PMM were consistently higher in the soluble fractions of mucoid strains (1.2–3.6 nmol/min/mg protein) than of nonmucoid strains (0.2–0.6 nmol/min/mg protein).  相似文献   

16.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

17.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6538 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5–9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demostration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four solubilzed membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining: NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

18.
The effects of chronic ethanol or sucrose administration to rats on acetylcholinesterase from brain and liver were investigated. Membrane-bound and soluble acetylcholinesterase activities were determined in fractions prepared by centrifugation. The thermal stability and the effects of temperature and different types of alcohols on acetylcholinesterase activity were also studied. Membrane-bound acetylcholinesterase activity increased (p < 0.01) in the liver after chronic ethanol administration, whereas no differences among groups in the encephalic areas, except in the brain stem soluble form, were found. Membrane-bound acetylcholinesterase from the ethanol- and sucrose-treated groups was more stable at the different temperatures assayed between 10 and 50°C than that corresponding to the control group. Non-linear Arrhenius plots were obtained with preparations of membrane-bound acetylcholinesterase from rat liver, with discontinuities at 30°C (control or sucrose groups) or 34–35°C (alcohol group). Assays made with membrane-bound or soluble enzyme from brain showed linear Arrhenius plots in all groups studied. The inhibitory effects of increasing concentrations of ethanol, n-propanol and n-butanol on acetylcholinesterase preparations from forebrain, cerebellum, brain stem and liver of the three experimental groups (control, sucrose-fed and ethanol-fed) were very similar. However, n-butanol displayed a biphasic action on particulate or soluble preparations of rat forebrain. n-butanol inhibited (competitive inhibition) at higher concentrations (250–500 mM), while at lower concentrations (10–25 mM), the alcohol inhibited at low substrate concentrations but activated at high substrate concentration. These results suggest that the liver is more affected by ethanol than the brain. Moreover, the lipid composition of membranes is probably modified by ethanol or sucrose ingestion and this would affect membrane fluidity and consecuently the behaviour of acetylcholinesterase.  相似文献   

19.
Summary Myofibrillar adenosine triphosphatase (ATPase) activity was demonstrated in sections of masseter and temporalis muscles and of selected limb muscles of adult rhesus monkeys. Incubations were performed either with no pre-treatment or after prior incubation in alkaline media (pH 10.2–10.4) or acidic media (pH 3.8–4.6). Without pre-treatment, fibres having high or low ATPase activity were observed in limb and masticatory muscles. Following alkaline pre-incubation the difference between high and low ATPase of limb muscle fibres is accentuated, whereas pre-incubation in acidic media (pH 4.3) results in inhibition of high and potentiation of low ATPase activities (acid reversal). While pre-incubation of masticatory muscle sections at pH 10.2 accentuates differences in ATPase activity, pre-incubation at pH 10.4 abolishes ATPase activity. In contrast, masticatory muscle fibres showed no reversal of ATPase activity following acidic pre-incubation (pH 4.3). Pre-incubation at pH 3.8 abolished the ATPase activity of both limb and masticatory muscle fibres. The biochemical basis for the differences in ATPase histochemistry between masticatory and limb muscles is not known.  相似文献   

20.
The distribution of cyclic AMP-dependent protein kinase activity in porcine thyroid glands has been studied. Enzyme activity catalyzing phosphorylation of exogenous substrate (protamine) from ATP, and cyclic AMP binding were determined in parallel in subcellular fractions purified by differential centrifugation and flotation on sucrose density layers. Both activities were found in all the studied fractions; they were quantitatively the highest in the cytosol but particles showed the highest specific activities.Latent protein-kinase activity was unmasked by action of detergents on microsomes (× 5–10 fold) and solubilized (85 to 99 p. cent of the initial total activity). Cyclic AMP binding capacity was also recovered in detergent-treated microsomal extracts in spite of reduced cyclic AMP binding in the presence of detergent.Protein kinase activity and cyclic AMP-binding proteins were less represented in purified nuclei than in microsomes. Again both activities were unmasked by detergent.Preparations highly enriched in Golgi membranes were compared to rough microsomal preparations. Higher protein kinase activity was detected in rough microsomes as compared to Golgi membranes, whereas the reverse was true for cyclic AMP binding. Both activities were equalized after detergent treatment. Since unmasking of protein kinase activity was the highest in Golgi membranes, this fraction contains more enzyme activity and cyclic AMP binding capacity than rough microsomes.The localization of endogeneous protein substrates of cyclic AMP-dependent protein kinases was investigated using purified soluble protein kinase subcellular fractions. The better endogeneous substrates seemed to be localized in the rough microsomal and in the nuclear fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号