首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated turbulent shear stresses resulting from disturbed blood flow through prosthetic heart valves can cause damage to red blood cells and platelets. The purpose of this study was to measure the turbulent shear stresses occurring downstream of aortic prosthetic valves during in-vitro pulsatile flow. By matching the indices of refraction of the blood analog fluid and model aorta, correlated, simultaneous two-component laser velocimeter measurements of the axial and radial velocity components were made immediately downstream of two aortic prosthetic valves. Velocity data were ensemble averaged over 200 or more cycles for a 15-ms window opened at peak systolic flow. The systolic duration for cardiac flows of 8.4 L/min was 200 ms. Ensemble-averaged total shear stress levels of 2820 dynes/cm2 and 2070 dynes/cm2 were found downstream of a trileaflet valve and a tilting disk valve, respectively. These shear stress levels decreased with axial distance downstream much faster for the tilting disk valve than for the trileaflet valve.  相似文献   

2.
Thrombogenesis and hemolysis have both been linked to the flow dynamics past heart valve prostheses. To learn more about the particular flow dynamics past mitral valve prostheses in the left ventricle under controlled experimental conditions, an in vitro study was performed. The experimental methods included velocity and turbulent shear stress measurements past caged-ball, tilting disc, bileaflet, and polyurethane trileaflet mitral valves in an acrylic rigid model of the left ventricle using laser Doppler anemometry. The results indicate that all four prosthetic heart valves studied create at least mildly disturbed flow fields. The effect of the left ventricular geometry on the flow development is to produce a stabilizing vortex which engulfs the entire left ventricular cavity, depending on the orientation of the valve. The measured turbulent shear stress magnitudes for all four valves did not exceed the reported value for hemolytic damage. However, the measured turbulent shear stresses were near or exceeded the critical shear stress reported in the literature for platelet lysis, a known precursor to thrombus formation.  相似文献   

3.
Turbulent flow simulations are run for five aortic trileaflet valve geometries, ranging from a valve leaflet orifice area of 1.1 cm2 (Model A1—very stenotic) to 5.0 cm2 (Model A5—natural valve). The simulated data compares well with experimental measurements made downstream of various aortic trileaflet valves by Woo (PhD Thesis, 1984). The location and approximate width and length of recirculation regions are correctly predicted. The less stenotic valve models reattach at the end of the aortic sinus region, 1.1 diameters downstream of the valve. The central jet exiting the less stenotic valve models is not significantly different from fully developed flow, and therefore recovers very quickly downstream of the reattachment point. The more stenotic valves disturb the flow to a greater degree, generating recirculation regions large enough to escape the sinuses and reattach further downstream. Peak turbulent shear stress values downstream of the aortic valve models which approximated prosthetic valves are 125 and 300 N m−2, very near experimental observations of 150 to 350 N m−2. The predicted Reynolds stress profiles also present the correct shape, a double peak profile, with the location of the peak occuring at the location of maximum velocity gradient, which occurs near the recirculation region. The pressure drop across model A2 (leaflet orifice area 1.6 cm2) is 20 mmHg at 1.6 diameters downstream. This compares well with values ranging from 19.5 to 26.2 mmHg for valves of similar orifice areas. The pressure drop decreases with decreasing valve stenosis, to a negligible value across the least stenotic valve model. Based on the good agreement between experimental measurements of velocity, shear stress and pressure drop, compared to the simulated data, the model has the potential to be a valuable tool in the analysis of heart valve designs.  相似文献   

4.
The need for better and longer lasting trileaflet valves has led to the design and development of the Abiomed polymeric trileaflet valve prosthesis. In-vitro fluid dynamic studies on sizes 25 and 21 mm valves in the aortic position indicate an overall improvement in performance compared to the Carpentier-Edwards and Ionescu-Shiley tissue valves in current clinical use. The pressure drop studies yielded effective orifice areas of 1.99 and 1.54 cm2, and performance indices of 0.41 and 0.45 for the Nos. 25 and 21 valves, respectively. Leaflet photography studies indicated that the two valve sizes had maximum opening areas of 225 and 145 mm2, respectively, at a normal resting cardiac output. Steady and pulsatile flow velocity measurements with a laser-Doppler anemometer (LDA) system indicate that the flow field downstream of the Abiomed valve is jetlike and turbulent. Maximum mean square axial velocity fluctuations of 55 and 83 cm/s, and turbulent shear stresses of 220 and 450 N/m2 were measured in the immediate vicinity of the nos. 25 and 21 valves, respectively. The Abiomed valves studied had been originally configured for use in valved conduits, and it is therefore our opinion that further improvements can be made to the valve and stent design, which would enhance its fluid dynamic performance.  相似文献   

5.
Hydrodynamic testing of the Abiomed polyurethane trileaflet valve has been carried out to establish performance data of valve function. A Medtronic Hall tilting disk, a Carbomedics bileaflet, a Hancock II bioprosthesis and an Abiomed polyurethane trileaflet valve, all size 27 mm, underwent both pulsatile and steady-flow hydrodynamic testing. Results of the variation of pressure difference with RMS pulsatile flow and steady flow, and effective orifice area, showed that the Abiomed valve had significantly poorer opening characteristics than the tissue valve and the two mechanicalvalves. The Abiomed valve's performance was seen to be related to its construction and manufacture. This study highlights some of the problems associated with the design and development of synthetic trileaflet heart valve prostheses.  相似文献   

6.
目前临床使用的各种机械心脏瓣膜的主要问题是血栓栓塞和与抗凝治疗有关的出血,其缺陷在于瓣膜开启时,碟片和支架将瓣膜的整个血流通道分隔成三至四个较小的血流通道。在这种受阻隔的血流通宫,形成容易诱发血栓的高剪应力区、紊流和滞流区。我们研制的两种机械心脏瓣膜在瓣膜开启时,没有任何支架和碟片分隔瓣膜的血流通道,使血流与天然心脏瓣膜中的相类似,可减少对血液的危害,从而可减少换瓣病人对抗凝治疗的依赖程度。  相似文献   

7.
Since artificial heart valve related complications such as thrombus formation, hemolysis and calcification are considered related to flow disturbances caused by the inserted valve, a thorough hemodynamic characterization of heart valve prostheses is essential. In a pulsatile flow model, fluid velocities were measured one diameter downstream of a Hancock Porcine (HAPO) and a Ionescu-Shiley Pericardial Standard (ISPS) aortic valve. Hot-film anemometry (HFA) was used for velocity measurements at 41 points in the cross-sectional area of the ascending aorta. Three-dimensional visualization of the velocity profiles, at 100 different instants during one mean pump cycle, was performed. Turbulence analysis was performed as a function of time by calculating the axial turbulence energy within 50 ms overlapping time windows during the systole. The turbulent shear stresses were estimated by using the correlation equation between Reynolds normal stress and turbulent (Reynolds) shear stress. The turbulent shear stress distribution was visualized by two-dimensional color-mapping at different instants during one mean pump cycle. Based on the velocity profiles and the turbulent shear stress distribution, a relative blood damage index (RBDI) was calculated. It has the feature of combining the magnitude and exposure time of the estimated shear stresses in one index, covering the entire cross-sectional area. The HAPO valve showed a skewed jet-type velocity profile with the highest velocities towards the left posterior aortic wall. The ISPS valve revealed a more parabolic-shaped velocity profile during systole. The turbulent shear stresses were highest in areas of high or rapidly changing velocity gradients. For the HAPO valve the maximum estimated turbulent shear stress was 194 N m-2 and for the ISPS valve 154 Nm-2. The RBDI was the same for the two valves. The turbulent shear stresses had magnitudes and exposure times that might cause endothelial damage and sublethal or lethal damage to blood corpuscules. The RBDI makes comparison between different heart valves easier and may prove important when making correlation with clinical observations.  相似文献   

8.
The dimensions of the aortic valve components condition its ability to prevent blood from flowing back into the heart. While the theoretical parameters for best trileaflet valve performance have already been established, an effective approach to describe other less optimal, but functional models has been lacking. Our goal was to establish a method to determine by how much the dimensions of the aortic valve components can vary while still maintaining proper function. Measurements were made on silicone rubber casts of human aortic valves to document the range of dimensional variability encountered in normal adult valves. Analytical equations were written to describe a fully three-dimensional geometric model of a trileaflet valve in both the open and closed positions. A complete set of analytical, numerical and graphical tools was developed to explore a range of component dimensions within functional aortic valves. A list of geometric guidelines was established to ensure safe operation of the valve during the cardiac cycle, with practical safety margins. The geometry-based model presented here allows determining quickly if a certain set of valve component dimensions results in a functional valve. This is of great interest to designers of new prosthetic heart valve models, as well as to surgeons involved in valve-sparing surgery.  相似文献   

9.
In this study we have employed a single channel, pulsed ultrasonic Doppler velocimeter to measure instantaneous velocity distributions within the pumping chamber of a ventricular assist device. Instantaneous velocities have been decomposed into periodic mean and turbulent fluctuating components from which estimates of Reynolds stresses within the chamber and mean shear stresses along the wall of the chamber have been obtained. A review of the complete data set indicates a maximum value of the mean wall shear stress of 25 dynes/cm2 and a maximum Reynolds stress of 212 dynes/cm2. These values are lower than those measured distal to aortic valve prostheses in vitro and are well below levels known to damage blood components. Core flow patterns, wall washing patterns and flow stagnation points are also revealed.  相似文献   

10.
The Gorlin equation for the hemodynamic assessment of valve area is commonly used in cardiac catheterization laboratories. A study was performed to test the prediction capabilities of the Gorlin formula as well as the Aaslid and Gabbay formula for the effective orifice area of prosthetic heart valves. Pressure gradient, flow, and valve opening area measurements were performed on four 27 mm valve prostheses (two mechanical bileaflet designs, St. Jude and Edwards-Duromedics, an Edwards pericardial tissue valve, and a trileaflet polyurethane valve) each mounted in the aortic position of an in vitro pulse duplicator. With the known valve orifice area, a different discharge coefficient was computed for each of the four valves and three orifice area formulas. After some theoretical considerations, it was proposed that the discharge coefficient would be a function of the flow rate through the valve. All discharge coefficients were observed to increase with increasing systolic flow rate. An empirical relationship of discharge coefficient as a linear function of systolic flow rate was determined through a regression analysis, with a different relationship for each valve and each orifice area formula. Using this relationship in the orifice area formulas improved the accuracy of the prediction of the effective orifice area with all three formulas performing equally well.  相似文献   

11.
Artificial bio-prosthetic heart valves are prone to fatigue tearing, having a 50% failure rate in ten years. Tears in valves give rise to pulsing reverse flow back through the valve. This is termed regurgitant flow and the resultant jet of blood a regurgitant jet. The regurgitant volume of the jet during the pulsing cycle gives a measure of the severity of the valve defect and clinical significance. Hence, it is important for the cardiologists to be able to quantify this volume. Although the velocity of the regurgitant jet can be determined using Doppler ultrasound, the dimensions of the heart valve lesion cannot be measured directly; hence, the volumetric flow rate cannot be quantified accurately. At present the severity of the regurgitant jet is assessed qualitatively from the intrusion of the jet into the cardiac chamber. In the present study, classical mathematical theories of turbulent jets have been used to describe the velocity distributions for the types of jets expected in defective heart valves and these distributions have been verified experimentally. One of these models has been developed to enable the regurgitant volumetric flow through an axisymmetric orifice of unknown radius to be calculated from the velocity distribution of the jet. This relationship may be used in conjunction with ultrasound techniques to quantify the regurgitant volume within defective artificial heart valve implants. The present study shows that there is a significant difference in the velocity distributions in jets emanating from axisymmetric and high aspect ratio slots.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two.  相似文献   

13.
Around 250,000 heart valve replacements are performed every year around the world. Due their higher durability, approximately 2/3 of these replacements use mechanical prosthetic heart valves (mainly bileaflet valves). Although very efficient, these valves can be subject to valve leaflet malfunctions. These malfunctions are usually the consequence of pannus ingrowth and/or thrombus formation and represent serious and potentially fatal complications. Hence, it is important to investigate the flow field downstream of a dysfunctional mechanical heart valve to better understand its impact on blood components (red blood cells, platelets and coagulation factors) and to improve the current diagnosis techniques. Therefore, the objective of this study will be to numerically and experimentally investigate the pulsatile turbulent flow downstream of a dysfunctional bileaflet mechanical heart valve in terms of velocity field, vortex formation and potential negative effect on blood components. The results show that the flow downstream of a dysfunctional valve was characterized by abnormally elevated velocities and shear stresses as well as large scale vortices. These characteristics can predispose to blood components damage. Furthermore, valve malfunction led to an underestimation of maximal transvalvular pressure gradient, using Doppler echocardiography, when compared to numerical results. This could be explained by the shifting of the maximal velocity towards the normally functioning leaflet. As a consequence, clinicians should try, when possible, to check the maximal velocity position not only at the central orifice but also through the lateral orifices. Finding the maximal velocity in the lateral orifice could be an indication of valve dysfunction.  相似文献   

14.
The mitral valve, as an active flap, forms the major part of the left ventricular inflow tract and therefore plays an important function in many aspects of left ventricular performance. The anterior leaflet of this valve is the largest and most ventrally placed of two leaflets that come together during ventricular systole to close the left atrioventricular orifice. Various neurotransmitters are responsible for different functions including controlling valve movement, inhibiting or causing the failure of impulse conduction in the valve and the sensation of pain. Nitric oxide acts as a gaseous free radical neurotransmitter, neuromediator and effective cardiovascular modulator. Acetyl-choline is known to function as a typical neurotransmitter. Histochemical methods for detection of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), as an indirect nitric oxide-synthase marker, and method for detection of acetylcholinesterase (AChE) were used. Both methods were performed on the same valve sample. A widespread distribution of nerve fibres was observed in the anterior leaflet of the mitral valve. The fine NADPH-d positive (nitrergic) nerve fibres were identified in all zones of valve leaflet. AChE positive (cholinergic) nerve fibres were identified forming dense network and fibres organized in stripes. Endocardial cells and vessels manifested heavy NADPH-d activity. Our observations suggest a different arrangement of nitrergic and cholinergic nerve fibres in the anterior leaflet of the mitral valve. The presence of nitrergic and cholinergic activity confirms the involvement of both neurotransmitters in nerve plexuses and other structures of mitral valve.Key words: NADPH-diaphorase, acetylcholinesterase, heart, mitral valve, nerve fibres, vessels, rat.  相似文献   

15.
In this paper, a finite element analysis of the stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position is presented. The geometry of the valve was modified from a relationship proposed by Ghista and Reul (J. Biomechanics 10, 313-324, 1977). The effects of variations in stent height, leaflet thickness and coaptation area on the stress distribution were also analyzed. Analyses were performed with both rigid and flexible stents for the trileaflet valve in order to delineate the effect of stent flexibility on the leaflet stress distribution. The results showed that regions of stress concentration were present near the commissural attachment similar to those predicted with the bioprostheses. The stresses on the leaflets were reduced by increasing the stent height with both rigid and flexible stents. Selectively increasing the leaflet thickness near the commissures and also increasing the coaptation area did not prove to reduce the leaflet stresses when the stent flexibility was taken into account. The possible effect of high stresses on the structural integrity of polyurethane leaflets and its relationship with calcification is yet to be investigated.  相似文献   

16.
Functional imaging computational fluid dynamics simulations of right ventricular (RV) inflow fields were obtained by comprehensive software using individual animal-specific dynamic imaging data input from three-dimensional (3-D) real-time echocardiography (RT3D) on a CRAY T-90 supercomputer. Chronically instrumented, lightly sedated awake dogs (n = 7) with normal wall motion (NWM) at control and normal or diastolic paradoxical septal motion (PSM) during RV volume overload were investigated. Up to the E-wave peak, instantaneous inflow streamlines extended from the tricuspid orifice to the RV endocardial surface in an expanding fanlike pattern. During the descending limb of the E-wave, large-scale (macroscopic or global) vortical motions ensued within the filling RV chamber. Both at control and during RV volume overload (with or without PSM), blood streams rolled up from regions near the walls toward the base. The extent and strength of the ring vortex surrounding the main stream were reduced with chamber dilatation. A hypothesis is proposed for a facilitatory role of the diastolic vortex for ventricular filling. The filling vortex supports filling by shunting inflow kinetic energy, which would otherwise contribute to an inflow-impeding convective pressure rise between inflow orifice and the large endocardial surface of the expanding chamber, into the rotational kinetic energy of the vortical motion that is destined to be dissipated as heat. The basic information presented should improve application and interpretation of noninvasive (Doppler color flow mapping, velocity-encoded cine magnetic resonance imaging, etc.) diastolic diagnostic studies and lead to improved understanding and recognition of subtle, flow-associated abnormalities in ventricular dilatation and remodeling.  相似文献   

17.
The high incidence of thromboembolic complications of mechanical heart valves (MHV), primarily due to platelet activation by contact with foreign surfaces and by non-physiological flow patterns past the valve, still limits their success as permanent implants. The latter include elevated shear and turbulent stresses and shed vortices formed in the wake of the valve's leaflets during the deceleration phase, potentially entrapping activated and aggregated platelets. It is hypothesized that these flow patterns induce the formation of free emboli which are the source of cerebrovascular microemboli associated with MHV. Implicit to this hypothesis is that free emboli formation will be affected by the implantation technique employed and the valve orientation, as those will alter the flow characteristics past the valve and the interaction of the platelets with the flow. In this study, numerical simulations of turbulent pulsatile flow past a St. Jude Medical bi-leaflet MHV were conducted. Platelet shear histories were calculated along pertinent turbulent platelet trajectories, and the effect of a misaligned valve on platelet activation was quantified and compared to that of an aligned valve. It demonstrated that the combination of a tilted valve and subannularly sutured pledgets had an explicit detrimental effect on platelet activation, with the following entrapment of the platelets within the shed vortices of the wake leading to a significant increase of the thromboembolic potential of the valve. This numerical model depicted a viable course for free emboli formation, and indicated how the implantation technique may enhance the risk of cardioembolism.  相似文献   

18.
Pulsatile flow past aortic valve bioprostheses in a model human aorta   总被引:1,自引:0,他引:1  
Pulsatile flow development past tissue valve prostheses in a model human aorta has been studied using qualitative flow visualization and quantitative laser-Doppler techniques. Experiments were conducted both in steady and physiological pulsatile flow situations and the measurements included the pressure drop across the valve, the instantaneous flow rate as well as the velocity profiles and turbulent stresses downstream to the valves. Our study shows that the velocity profiles with pericardial valves are closer to those measured past natural aortic valves. The porcine valves with a smaller valve opening area produce a narrower and stronger jet downstream from the valve with relatively larger turbulent axial stresses in the boundary of the jet. Our study suggests that the pericardial valves with turbulent stresses comparable to those of caged ball and tilting disc valves are preferable from a hemodynamic point of view.  相似文献   

19.
Elevated turbulent shear stresses associated with sufficient exposure times are potentially damaging to blood constituents. Since these conditions can be induced by mechanical heart valves, the objectives of this study were to locate the maximum turbulent shear stress in both space and time and to determine how the maximum turbulent shear stress depends on the cardiac flow rate in a pulsatile flow downstream of a tilting disk valve. Two-component, simultaneous, correlated laser velocimeter measurements were recorded at four different axial locations and three different flow rates in a straight tube model of the aorta. All velocity data were ensemble averaged within a 15 ms time window located at approximately peak systolic flow over more than 300 cycles. Shear stresses as high as 992 dynes/cm2 were found 0.92 tube diameters downstream of the monostrut, disk valve. The maximum turbulent shear stress was found to scale with flow rate to the 0.72 power. A repeatable starting vortex was shed from the disk at the beginning of each cycle.  相似文献   

20.
The bicuspid aortic valve (BAV) is a common congenital malformation of the aortic valve (AV) affecting 1% to 2% of the population. The BAV is predisposed to early degenerative calcification of valve leaflets, and BAV patients constitute 50% of AV stenosis patients. Although evidence shows that genetic defects can play a role in calcification of the BAV leaflets, we hypothesize that drastic changes in the mechanical environment of the BAV elicit pathological responses from the valve and might be concurrently responsible for early calcification. An in vitro model of the BAV was constructed by surgically manipulating a native trileaflet porcine AV. The BAV valve model and a trileaflet AV (TAV) model were tested in an in vitro pulsatile flow loop mimicking physiological hemodynamics. Laser Doppler velocimetry was used to make measurements of fluid shear stresses on the leaflet of the valve models using previously established methodologies. Furthermore, particle image velocimetry was used to visualize the flow fields downstream of the valves and in the sinuses. In the BAV model, flow near the leaflets and fluid shear stresses on the leaflets were much more unsteady than for the TAV model, most likely due to the moderate stenosis in the BAV and the skewed forward flow jet that collided with the aorta wall. This additional unsteadiness occurred during mid- to late-systole and was composed of cycle-to-cycle magnitude variability as well as high-frequency fluctuations about the mean shear stress. It has been demonstrated that the BAV geometry can lead to unsteady shear stresses under physiological flow and pressure conditions. Such altered shear stresses could play a role in accelerated calcification in BAVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号