首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质合成过程一般被归纳为由合成的起始、肽链的延伸和合成的终止组成的三步曲 . 然而,随着对核糖体再循环因子 (ribosome recycling factor , RRF) 在蛋白质合成过程中作用的深入研究,人们提出了蛋白质生物合成应是四步曲, 这第四步就是翻译终止后核糖体复合物的解体 , 也就是通常说的核糖体循环再利用 . 简要地介绍了翻译终止后复合物解体的可能机制:核糖体再循环因子和蛋白质合成延伸因子 G 在核糖体上协同作用催化这一过程的完成 .  相似文献   

2.
Recycling of eukaryotic posttermination ribosomal complexes   总被引:2,自引:0,他引:2  
Pisarev AV  Hellen CU  Pestova TV 《Cell》2007,131(2):286-299
After translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA.  相似文献   

3.
RF3 was initially characterized as a factor that stimulates translational termination in an in vitro assay. The factor has a GTP binding site and shows sequence similarity to elongation factors EF-Tu and EF-G. Paradoxically, addition of GTP abolishes RF3 stimulation in the classical termination assay, using stop triplets. We here show GTP hydrolysis, which is only dependent on the simultaneous presence of RF3 and ribosomes. Applying a new termination assay, which uses a minimessenger RNA instead of separate triplets, we show that GTP in the presence of RF3 stimulates termination at rate-limiting concentrations of RF1. We show that RF3 can substitute for EF-G in RRF-dependent ribosome recycling reactions in vitro. This activity is GTP-dependent. In addition, excess RF3 and RRF in the presence of GTP caused release of nonhydrolyzed fmet-tRNA. This supports previous genetic experiments, showing that RF3 might be involved in ribosomal drop off of peptidyl-tRNA. In contrast to GTP involvement of the above reactions, stimulation of termination with RF2 by RF3 was independent of the presence of GTP. This is consistent with previous studies, indicating that RF3 enhances the affinity of RF2 for the termination complex without GTP hydrolysis. Based on our results, we propose a model of how RF3 might function in translational termination and ribosome recycling.  相似文献   

4.
After the termination step of translation, the posttermination complex (PoTC), composed of the ribosome, mRNA, and a deacylated tRNA, is processed by the concerted action of the ribosome-recycling factor (RRF), elongation factor G (EF-G), and GTP to prepare the ribosome for a fresh round of protein synthesis. However, the sequential steps of dissociation of the ribosomal subunits, and release of mRNA and deacylated tRNA from the PoTC, are unclear. Using three-dimensional cryo-electron microscopy, in conjunction with undecagold-labeled RRF, we show that RRF is capable of spontaneously moving from its initial binding site on the 70S Escherichia coli ribosome to a site exclusively on the large 50S ribosomal subunit. This movement leads to disruption of crucial intersubunit bridges and thereby to the dissociation of the two ribosomal subunits, the central event in ribosome recycling. Results of this study allow us to propose a model of ribosome recycling.  相似文献   

5.
6.
Translational release factors decipher stop codons in mRNA and activate hydrolysis of peptidyl-tRNA in the ribosome during translation termination. The mechanisms of these fundamental processes are unknown. Here we have mapped the interaction of bacterial release factor RF1 with the ribosome by directed hydroxyl radical probing. These experiments identified conserved domains of RF1 that interact with the decoding site of the 30S ribosomal subunit and the peptidyl transferase site of the 50S ribosomal subunit. RF1 interacts with a binding pocket formed between the ribosomal subunits that is also the interaction surface of elongation factor EF-G and aminoacyl-tRNA bound to the A site. These results provide a basis for understanding the mechanism of stop codon recognition coupled to hydrolysis of peptidyl-tRNA, mediated by a protein release factor.  相似文献   

7.
After peptide release by a class-1 release factor, the ribosomal subunits must be recycled back to initiation. We have demonstrated that the distance between a strong Shine-Dalgarno (SD) sequence and a codon in the P site is crucial for the binding stability of the deacylated tRNA in the P site of the posttermination ribosome and the in-frame maintenance of its mRNA. We show that the elongation factor EF-G and the ribosomal recycling factor RRF split the ribosome into subunits in the absence of initiation factor 3 (IF3) by a mechanism that requires both GTP and GTP hydrolysis. Taking into account that EF-G in the GTP form and RRF bind with positive cooperativity to the free 50S subunit but with negative cooperativity to the 70S ribosome, we suggest a mechanism for ribosome recycling that specifies distinct roles for EF-G, RRF, and IF3.  相似文献   

8.
Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined “initiation-specific” binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.  相似文献   

9.
During of protein synthesis, or translation, four stages are usually recognized: initiation, elongation, termination, and recycling. Translation termination involves two protein types, the factors of termination of the first class participate in recognition of stop-codons and the termination factors of the second class are GTP-ases, which stimulate activity of the first class factors. Bacteria have two proteins of class 1, RF1 and RF2 (release factor), with overlapping codon specificity; both factors are capable to recognize the codon UAA, while the codons UAG and UGA are only decoded by RF1 and RF2, respectively. In addition, bacteria contain one factor of class 2, RF3, which not only stimulates activity of RF1 and RF2, but also promotes release of the first class factors after completion of termination. In contrast to prokaryotes, eukaryotic organisms have only one termination factor of class 1, eRF1. This protein recognizes each of the three stop-codons, which results in hydrolysis of peptidyl-tRNA. Eukaryotic cells also have only one factor of class 2, eRF3.  相似文献   

10.
In the translational termination step of protein synthesis the three termination codons UAA, UAG or UGA are recognized by so-called release or termination factors. The release factor RF-1 interacts with UAG and UAA whereas RF-2 is specific for UGA and UAA. Two mechanisms concerning the termination event have been discussed so far: recognition of the termination codon by the protein in a tRNA-like manner or double-strand formation between the codon and the 3' end of the 16S rRNA which is stabilized by the termination factor. Using equilibrium dialysis we show that 40% of the ribosomes can bind UGAA in an RF-2-dependent manner. The stability with the correct combination RF-2-UGA is tenfold higher as compared to the wrong termination codon UAG. We confirm prior findings that the termination factor RF-2 is bound to the A-site of the ribosome. In addition to the ribosomal proteins L2, L10, L7/L12 and L20 of the large subunit and S6 and S18 of the small subunit, the 16S rRNA became labelled when radioactive UGA was crosslinked to the ribosome in the presence of RF-2. Our data support a mechanism of termination in which a double strand between the termination codon and the 3' end of the 16S rRNA is formed as the starting event. The resulting RNA-RNA double strand in turn may be recognized and stabilized by the termination factor.  相似文献   

11.
Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.  相似文献   

12.
Ribosome recycling factor (RRF) together with elongation factor G (EF-G) disassembles the post- termination ribosomal complex. Inhibitors of translocation, thiostrepton, viomycin and aminoglycosides, inhibited the release of tRNA and mRNA from the post-termination complex. In contrast, fusidic acid and a GTP analog that fix EF-G to the ribosome, allowing one round of tRNA translocation, inhibited mRNA but not tRNA release from the complex. The release of tRNA is a prerequisite for mRNA release but partially takes place with EF-G alone. The data are consistent with the notion that RRF binds to the A-site and is translocated to the P-site, releasing deacylated tRNA from the P- and E-sites. The final step, the release of mRNA, is accompanied by the release of RRF and EF-G from the ribosome. With the model post-termination complex, 70S ribosomes were released from the post-termination complex by the RRF reaction and were then dissociated into subunits by IF3.  相似文献   

13.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

14.
In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.  相似文献   

15.
Ribosome stalling is an important incident enabling the cellular quality control machinery to detect aberrant mRNA. Saccharomyces cerevisiae Hbs1-Dom34 and Ski7 are homologs of the canonical release factor eRF3-eRF1, which recognize stalled ribosomes, promote ribosome release, and induce the decay of aberrant mRNA. Polyadenylated nonstop mRNA encodes aberrant proteins containing C-terminal polylysine segments which cause ribosome stalling due to electrostatic interaction with the ribosomal exit tunnel. Here we describe a novel mechanism, termed premature translation termination, which releases C-terminally truncated translation products from ribosomes stalled on polylysine segments. Premature termination during polylysine synthesis was abolished when ribosome stalling was prevented due to the absence of the ribosomal protein Asc1. In contrast, premature termination was enhanced, when the general rate of translation elongation was lowered. The unconventional termination event was independent of Hbs1-Dom34 and Ski7, but it was dependent on eRF3. Moreover, premature termination during polylysine synthesis was strongly increased in the absence of the ribosome-bound chaperones ribosome-associated complex (RAC) and Ssb (Ssb1 and Ssb2). On the basis of the data, we suggest a model in which eRF3-eRF1 can catalyze the release of nascent polypeptides even though the ribosomal A-site contains a sense codon when the rate of translation is abnormally low.  相似文献   

16.
17.
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.  相似文献   

18.
Several GTPases participate in bacterial protein biosynthesis. Initiation factor 2 controls the formation of the ribosomal initiation complex and places initiator fMet-tRNAfMet in the ribosomal P-site. Elongation factors Tu and G are responsible for codon-specific binding of the aminoacyl-tRNA to the A-site, and peptidyl-tRNA to the P-site, respectively, during the elongation phase of protein biosynthesis. Release factor 3, a GTPase which is not ubiquitous, is involved in termination and release of the nascent polypeptide. Other translation factors, including initiation factors 1 and 3, elongation factor Ts, release factors 1 and 2, and ribosomal release factor do not belong to the family of GTP/GDP binding proteins. The guanosine nucleotide binding domains of the GTPases involved in translation are structurally related to the Galpha subunit of heterotrimeric G proteins and to the proteins of the Ras family. We have identified and sequenced all genes coding for translation factors in the extreme thermophile Thermus thermophilus. The proteins were overproduced in Escherichia coli, purified, biochemically characterised and used for crystallisation and structural analysis. Further biochemical investigations were aimed at gaining insight into the molecular mechanism underlying the regulation of the GTPase activity of the translation factors, and to elucidate the role of their ribosomal binding sites in this process.  相似文献   

19.
Prokaryotic release factor RF3 is a stimulatory protein that increases the rate of translational termination by the decoding release factors RF1 and RF2. The favoured model for RF3 function is the recycling of RF1 and RF2 after polypeptide release by displacing the factors from the ribosome. In this study, we have demonstrated that RF3 also plays an indirect role in the decoding of stop signals of highly expressed genes and recoding sites by accentuating the influence of the base following the stop codon (+4 base) on termination signal strength. The efficiency of decoding strong stop signals (e.g. UAAU and UAAG) in vivo is markedly improved with increased RF3 activity, while weak signals (UGAC and UAGC) are only modestly affected. However, RF3 is not responsible for the +4 base influence on termination signal strength, since prfC- strains lacking the protein still exhibit the same qualitative effect. The differential effect of RF3 at stop signals can be mimicked by modest overexpression of decoding RF. These findings can be interpreted according to current views of RF3 as a recycling factor, which functions to maintain the concentration of free decoding RF at stop signals, some of which are highly responsive to changes in RF levels.  相似文献   

20.
The yeast Saccharomyces cerevisiae mitochondrial release factor was expressed from the cloned MRF1 gene, purified from inclusion bodies, and refolded to give functional activity. The gene encoded a factor with release activity that recognized cognate stop codons in a termination assay with mitochondrial ribosomes and in an assay with Escherichia coli ribosomes. The noncognate stop codon, UGA, encoding tryptophan in mitochondria, was recognized weakly in the heterologous assay. The mitochondrial release factor 1 protein bound to bacterial ribosomes and formed a cross-link with the stop codon within a mRNA bound in a termination complex. The affinity was strongly dependent on the identity of stop signal. Two alleles of MRF1 that contained point mutations in a release factor 1 specific region of the primary structure and that in vivo compensated for mutations in the decoding site rRNA of mitochondrial ribosomes were cloned, and the expressed proteins were purified and refolded. The variant proteins showed impaired binding to the ribosome compared with mitochondrial release factor 1. This structural region in release factors is likely to be involved in codon-dependent specific ribosomal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号