共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The regulation of PTEN intrinsic biochemical properties has not been fully elucidated. In this report, we investigated the role of the PTEN carboxyl-terminal tail domain in regulating its membrane targeting and catalytic functions. Characterization of a panel of PTEN phosphorylation site mutants revealed that mutating Ser-385 to alanine (S385A) promoted membrane localization in vivo and phosphatase activity in vitro. Furthermore, S385A mutation was associated with a substantial reduction in the phosphorylation of the Ser-380/Thr-382/Thr-383 cluster. Therefore, Ser-385 could prime additional dephosphorylation events to regulate PTEN catalytic activity. Moreover, substituting Ser-380/Thr-382/Thr-383 to phosphomimic residues reversed the phosphatase activity of the S385A mutation. Next, we further defined the underlying mechanisms responsible for the COOH-terminal tail region in modulating PTEN biological activity. We have identified an interaction between the 71-amino acid carboxyl-terminal tail region and the CBRIII motif of the C2 domain, which has been implicated in membrane binding. In addition, a synthetic phosphomimic peptide encompassing the phosphorylation site cluster between amino acids 368 and 390 within the tail region mediated the suppression of PTEN catalytic activity in vitro. This same peptide when expressed in cultured cells also impeded PTEN membrane localization and enhanced phospho-Akt levels. Thus, our data suggest that the COOH-terminal tail can act as an autoinhibitory domain to control both PTEN membrane recruitment and phosphatase activity. 相似文献
4.
Alvarez J Hamplova J Hohaus A Morano I Haase H Vassort G 《The Journal of biological chemistry》2004,279(13):12456-12461
Ahnak, a protein of 5643 amino acids, interacts with the regulatory beta-subunit of cardiac calcium channels and with F-actin. Recently, we defined the binding sites among the protein partners in the carboxyl-terminal domain of ahnak. Here we further narrowed down the beta(2)-interaction sites to the carboxyl-terminal 188 amino acids of ahnak by the recombinant ahnak protein fragments P3 (amino acids 5456-5556) and P4 (amino acids 5556-5643). The effects of these P3 and P4 fragments on the calcium current were investigated under whole-cell patch clamp conditions on rat ventricular cardiomyocytes. P4 but not P3 increased significantly the current amplitude by 22.7 +/- 5% without affecting its voltage dependence. The slow component of calcium current inactivation was slowed down by both P3 and P4, whereas only P3 slowed significantly the fast one. The composite recombinant protein fragment P3-P4 induced similar modifications to the ones induced by each of the ahnak fragments. In the presence of carboxyl-terminal ahnak protein fragments, isoprenaline induced a similar relative increase in current amplitude and shift in current kinetics. The actin-stabilizing agents, phalloidin and jasplakinolide, did not modify the effects of these ahnak protein fragments on calcium current in control conditions nor in the presence of isoprenaline. Hence, our results suggest that the functional effects of P3, P4, and P3-P4 on calcium current are mediated by targeting the ahnak-beta(2)-subunit interaction rather than by targeting the ahnak-F-actin interaction. More specifically they suggest that binding of the beta(2)-subunit to the endogenous subsarcolemmal giant ahnak protein re-primes the alpha(1C)/beta(2)-subunit interaction and that the ahnak-derived proteins relieve the beta(2)-subunit from this inhibition. 相似文献
5.
6.
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C delta in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate beta(2)-integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator. 相似文献
7.
The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. 总被引:3,自引:0,他引:3 下载免费PDF全文
T Akiyama S Matsuda Y Namba T Saito K Toyoshima T Yamamoto 《Molecular and cellular biology》1991,11(2):833-842
The mutant c-erbB-2 protein with Glu instead of Val-659 exhibited transforming activity in NIH 3T3 cells. This protein showed enhanced tyrosine kinase activity in vitro and enhanced autophosphorylation at Tyr-1248 located proximal to the carboxyl terminus. Enhanced tyrosine phosphorylation of several cellular proteins was detected in cells expressing the Glu-659 c-erbB-2 protein. Introduction of an additional mutation at the ATP-binding site (Lys-753 to Met) of this protein resulted in abolition of its transforming ability. These data indicate that the transforming potential of c-erbB-2 is closely correlated with elevated tyrosine kinase activity of the gene product. To investigate the role of autophosphorylation in cell transformation, we introduced an additional mutation at the autophosphorylation site of the Glu-659 c-erbB-2 protein (Tyr-1248 to Phe). This mutant protein exhibited lower tyrosine kinase activity and lower transforming activity. On the other hand, when the carboxyl-terminal 230 amino acid residues were deleted from the c-erbB-2 protein, the tyrosine kinase activity and cell-transforming activity of the protein were enhanced. Thus, the carboxyl-terminal domain, which contains the major autophosphorylation site, Tyr-1248, may regulate cellular transformation negatively and autophosphorylation may eliminate this negative regulation. 相似文献
8.
9.
10.
Petroutsos D Busch A Janssen I Trompelt K Bergner SV Weinl S Holtkamp M Karst U Kudla J Hippler M 《The Plant cell》2011,23(8):2950-2963
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression. 相似文献
11.
12.
Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex II in chloroplast photosynthetic membranes 总被引:1,自引:0,他引:1
The light-harvesting chlorophyll a/b complex (LHC II) and four photosystem II (PS II) core proteins (8.3, 32, 34 and 44 kDa) become phosphorylated in response to reduction of the intersystem electron transport chain of green plant chloroplasts. Previous studies indicated that reduction of the plastoquinone (PQ) pool is the key event in kinase activation. However, we show here that, unlike PS II proteins, LHC II is phosphorylated only when the cytochrome b6f complex is active. Two lines of evidence support this conclusion. (1) 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the 2,4-dinitrophenyl ether of iodonitrothymol (DNP-INT), which are known to block electron flow into the cytochrome complex, selectively inhibit LHC II phosphorylation in spinach thylakoids. (2) The hcf6 mutant of maize, which contains PQ but lacks the cytochrome b6f complex, phosphorylates the four PS II proteins but fails to phosphorylate LHC II in vivo or in vitro. 相似文献
13.
14.
《FEBS letters》1985,184(1):90-95
A cloned cpDNA fragment containing a portion of the gene for the 32–36 kDa thylakoid protein of Chlamydomonas (polypeptide D-1) was isolated. Hybridization probing of RNA from soluble and membrane fractions of Chlamydomonas showed that the mRNA for D-1 is bound to thylakoid membranes. Run-off translation of thylakoid-bound polysomes (rough thylakoids) with [35S]-methionine yields polypeptide D-1 as the major product. Peptide mapping with S. aureus V-8 protease of D-1 synthesized (1) in vivo, (2) in vitro by rough thylakoids and (3) in the reticulocyte lysate directed by non-polyadenylated RNA showed that D-1 is synthesized as a precursor in the reticulocyte lysate but as the mature polypeptide by rough thylakoids. 相似文献
15.
16.
D. C. Fargo M. Zhang N. W. Gillham J. E. Boynton 《Molecular genetics and genomics : MGG》1998,257(3):271-282
Initiation of translation in Escherichia coli and related eubacteria involves well-defined interactions between a conserved Shine-Dalgarno (SD) sequence immediately upstream of the initiation codon in the mRNA leader and an equally conserved anti-SD sequence at the 3′ end of the 16S rRNA. SD-like sequences found in the leaders of many, but not all, mRNAs from cyanobacteria and chloroplasts are hypervariable in location, size, and base composition compared to those in E. coli, while anti-SD sequences in the respective 16S rRNAs remain highly conserved. We have examined the function of the SD-like sequences found in the leaders of four chloroplast genes of the green alga Chlamydomonas reinhardtii using replacement mutagenesis to eliminate complementarity with the anti-SD sequences and insertion of canonical SD sequences (GGAGG) at positions ?9 to ?5 relative to the initiation codon. Promoter-leader regions of the atpB, atpE, rps4, and rps7 genes representing the diversity of chloroplast SD-like sequences were fused to aadA and uidA reporter genes encoding spectinomycin resistance and GUS activity respectively. Analysis of chloroplast transformants of C. reinhardtii and transformants of E. coli carrying the wild-type and mutant reporter constructs revealed that mutagenic replacement of the putative SD sequences had no effect on the expression of either the aadA or uidA reporter genes. Chloroplast transformants with the canonical SD sequence also showed no differences in reporter gene expression, whereas expression of the reporter genes was increased by 10 to 30% in the E. coli transformants. Collectively our results suggest that even though SD-dependent initiation predominates in E. coli, this bacterium also has the capacity to initiate translation by an SD-independent mechanism. In contrast, plant chloroplasts, and very probably their cyanobacterial ancestors, appear to have adopted the SD-independent mechanism for translational initiation of most mRNAs. 相似文献
17.
The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP 总被引:6,自引:0,他引:6
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane. 相似文献
18.
Gudynaite-Savitch L Gretes M Morgan-Kiss RM Savitch LV Simmonds J Kohalmi SE Hüner NP 《Molecular genetics and genomics : MGG》2006,275(4):387-398
Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid
sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii ΔpetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii ΔpetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of
C. reinhardtii wild type. However, the C. reinhardtii
petA transformants accumulated lower levels of cytochrome b
6
/f complexes and exhibited lower light saturated rates of O2 evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport
as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome
f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are
not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability
to adaptation to cold environments.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
19.
20.
Chloroplast 93-kD heat shock protein (Hsp93/ClpC), an Hsp100 family member, is suggested to have various functions in chloroplasts, including serving as the regulatory chaperone for the ClpP protease in the stroma and acting as a motor component of the protein translocon at the envelope. Indeed, although Hsp93 is a soluble stromal protein, a portion of it is associated with the inner envelope membrane. The mechanism and functional significance of this Hsp93 membrane association have not been determined. Here, we mapped the region important for Hsp93 membrane association by creating various deletion constructs and found that only the construct with the amino-terminal domain deleted, Hsp93-ΔN, had reduced membrane association. When transformed into Arabidopsis (Arabidopsis thaliana), most atHsp93V-ΔN proteins did not associate with membranes and atHsp93V-ΔΝ failed to complement the pale-green and protein import-defective phenotypes of an hsp93V knockout mutant. The residual atHsp93V-ΔN at the membranes had further reduced association with the central protein translocon component Tic110. However, the degradation of chloroplast glutamine synthetase, a potential substrate for the ClpP protease, was not affected in the hsp93V mutant or in the atHSP93V-ΔN transgenic plants. Hsp93-ΔN also had the same ATPase activity as that of full-length Hsp93. These data suggest that the association of Hsp93 with the inner envelope membrane through its amino-terminal domain is important for the functions of Hsp93 in vivo. 相似文献