首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Dry weight yields from mixed cultures ofProsthecochloris aestuarii orChlorobium limicola with the sulfur reducingDesulfuromonas acetoxidans were determined on different growth limiting amounts of acetate, ethanol or propanol. The obtained yields agreed well with values predicted from stoichiometric calculations. 2. From mixed cultures of twoChlorobium limicola strains withDesulfovibrio desulfuricans orD. gigas on ethanol as the growth limiting substrate, dry weight yields were obtained as calculated for the complete utilization of the ethanol by the mixed cultures. 3. Dry weight yield determinations for two pure cultures ofChlorobium limicola with different growth limiting amounts of sulfide in the absence and presence of excess acetate confirmed that acetate is incorporated byChlorobium in a fixed proportion to sulfide; compared to the yield in the absence of acetate the yield is increased two to threefold in the presence of acetate. 4. The lowest possible sulfide concentrations necessary for optimal growth of mixed cultures of eitherProsthecochloris orChlorobium withDesulfuromonas on acetate were 7–8 mg H2S per liter of medium. 5. Doubling times at the growth rate limiting light intensities of 5, 10, 20, 50, 100 and 200 lux were determined under optimal growth conditions for the following phototrophic bacteria:Prosthecochloris aestuarii, Chlorobium phaeovibriodes, Chromatium vinosum andRhodopseudomonas capsulata. Reasonably good growth was still obtained withProsthecochloris at 10 and 5 lux light intensity at which no growth of the purple bacteria could be observed.  相似文献   

2.
Abstract Non-laminated, green to yellow-green microbial mats, with Chlorobium sp. as the only phototroph, occurred from 55 to about 40°C in hot springs in and near Rotorua, New Zealand. The pH ranged from 4.3 to 6.2 and sulfide from 0.2 to 1.8 mM. This Chlorobium sp. is unique in its ability to form populations at temperatures as high as 55°C. Spectroradiometric measurements with a fiber-optic microprobe in the intact Chlorobium mass showed great opacity with less than 0.1% of the incident radiation (at photosynthetically usable wavelengths) available at 0.7 mm depth within the mat, although the concentrated Chlorium population sometimes extended to 3 mm depth. Sulfide-dependent, anoxygenic photosynthesis was demonstrated by [14C]bicarbonate assimilation in mat suspensions and in intact mats by a sulfide-specific microelectrode. No oxygen evolution occurred and no O2 was present within the mat. A light-enhanced uptake of [14C]acetate also occurred in cell suspensions. This rate was not enhanced by sulfide.  相似文献   

3.
The utilization of sulfide by phototrophic sulfur bacteria temporarily results in the accumulation of elemental sulfur. In the green sulfur bacteria (Chlorobiaceae), the sulfur is deposited outside the cells, whereas in the purple sulfur bacteria (Chromatiaceae) sulfur is found intracellularly. Consequently, in the latter case, sulfur is unattainable for other individuals. Attempts were made to analyze the impact of the formation of extracellular elemental sulfur compared to the deposition of intracellular sulfur.According to the theory of the continuous cultivation of microorganisms, the steady-state concentration of the limiting substrate is unaffected by the reservoir concentration (S R).It was observed in sulfide-limited continuous cultures ofChlorobium limicola f.thiosulfatophilum that higherS R values not only resulted in higher steady-state population densities, but also in increased steady-state concentrations of elemental sulfur. Similar phenomena were observed in sulfide-limited cultures ofChromatium vinosum.It was concluded that the elemental sulfur produced byChlorobium, althouth being deposited extracellularly, is not easily available for other individuals, and apparently remains (in part) attached to the cells. The ecological significance of the data is discussed.Non-standard abbreviations RP reducing power - BChl bacteriochlorophyll - Ncell cell material - specific growth rate - {ie52-1} maximal specific growth rate - D dilution rate - K s saturation constant - s concentration of limiting substrate - S R same ass but in reservoir bottle - Y yield factor - iSo intracellular elemental sulfur - eSo extracellular elemental sulfur - PHB poly-beta-hydroxybutyric acid  相似文献   

4.
Sulfide and sulfur are used by the photosynthetic bacterium Chlorobium phaeobacteroides as electron donors. Sulfide and sulfur consumption was found to be affected by sulfide concentration in the medium. Raising the sulfide concentration from 0.28 mM to 5.05 mM caused an increase in the amount of S= utilized per growth unit from 0.58 mM to 2.32 mM. This increase in sulfide utilization was not reflected in a higher photosynthetic activity. Sulfide and sulfur consumption was also influenced by light intensity, with higher light intensity sulfide consumption was increased. In Lake Kinneret, Chlorobium phaeobacteroides did not bloom in the thermocline layer until sulfide concentrations reached 0.03–0.06 mM.  相似文献   

5.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

6.
B Fry  H Gest    J M Hayes 《Applied microbiology》1988,54(1):250-256
Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.  相似文献   

7.
Stable isotopic distributions in the sulfur cycle were studied with pure and mixed cultures of the anaerobic bacteria, Chlorobium vibrioforme and Desulfovibrio vulgaris. D. vulgaris and C. vibrioforme can catalyze three reactions constituting a complete anaerobic sulfur cycle: reduction of sulfate to sulfide (D. vulgaris), oxidation of sulfide to elemental sulfur (C. vibrioforme), and oxidation of sulfur to sulfate (C. vibrioforme). In all experiments, the first and last reactions favored concentration of the light 32S isotope in products (isotopic fractionation factor epsilon = -7.2 and -1.7%, respectively), whereas oxidation of sulfide favored concentration of the heavy 34S isotope in products (epsilon = +1.7%). Experimental results and model calculations suggest that elemental sulfur enriched in 34S versus sulfide may be a biogeochemical marker for the presence of sulfide-oxidizing bacteria in modern and ancient environments.  相似文献   

8.
In May 1998, during the fifty-first voyage on board the research vessel Professor Vodyanitskii, a comparative study was conducted of the species diversity of green and purple sulfur bacteria in the water column of the chemocline zone at deep-sea stations and on the bottom surface of the Black Sea shallow regions. At three deep-sea stations, the accumulation of photosynthesizing bacteria in the chemocline zone at a depth of 85-115 m was revealed on the basis of the distribution of potential values of carbon dioxide light fixation. The location of the site of potential carbon dioxide light fixation suggests that the photosynthesis may be determined by the activity of the brown Chlorobium sp., revealed earlier at these depths. Enrichment cultures of brown sulfur bacteria were obtained from samples taken at the deep-sea stations. By morphology, these bacteria, assigned to Chlorobium sp., appear as nonmotile straight or slightly curved rods 0.3-0.5 x 0.7-1.2 microm in size; sometimes, they form short chains. Ultrathin sections show photosynthesizing antenna-like structures, chlorosomes, typical of Chlorobiaceae. The cultures depended on the presence of NaCl (20 g/l) for growth, which corresponds to the mineralization of Black Sea water. The bacteria could grow photoautotrophically, utilizing sulfide, but the Black Sea strains grew much more slowly than the known species of brown sulfur bacteria isolated from saline or freshwater meromictic lakes. The best growth of the strains studied in this work occurred in media containing ethanol (0.5 g) or sodium acetate (1 g/l) and low amounts of sulfide (0.4 mM), which is consistent with the conditions of syntrophic growth with sulfidogens. The data obtained allow us to conclude that the cultures of brown sulfur bacteria are especially adapted to developing at large depths under conditions of electron donor deficiency owing to syntrophic development with sulfate reducers. The species composition of the photosynthetic bacteria developing in the bottom sediments of shallow stations differed substantially from that observed at deep-sea stations. Pure cultures of the green Chlorobium sp. BS 1C and BS 2C (chlorobactin as the carotenoid), purple sulfur bacteria Chromatium sp. BS 1Ch (containing spirilloxanthine series pigments), and Thiocapsa marina BS 2Tc (containing the carotenoid okenone) were obtained from samples of sediments at shallow-water stations. Brown sulfur bacteria were absent in the sediment samples obtained from the Black Sea shallow-water stations 1 and 2.  相似文献   

9.
A small spirillum, designated 5175, was isolated from an anaerobic enrichment culture for Desulfuromonas in which the major medium constituents were acetate and elemental sulfur. The organisms grew only under anaerobic or microaerophilic conditions. Elemental sulfur was formed anaerobically in a malate-sulfide medium, and cell densities of 10(8) cells/ml were obtained. Hydrogen and formate were actively oxidized as substrates for growth under anaerobic conditions; S0, S032-, or S2O32-, but not SO42-, served as electron acceptors and were stoichiometrically reduced to sulfide. Malate or fumarate likewise served as electron acceptors and were reduced to succinate. Nutritional requirements were simple, no vitamins or amino acids being required. For growth in inorganic media when carbon dioxide was the only carbon source, the addition of acetate was required as a source of cell carbon. The organism is gram negative. Cells had a diameter of 0.5 mum and a wavelength of 5.0 mum. Cell suspensions exhibited an absorption spectrum indicative of a cytochrome with peaks in the reduced form at 552, 523, and 416 nm. Well growing syntrophic cultures with Chlorobium were established with formate as the substrate.  相似文献   

10.
Growth and acetate metabolism by Candida utilis (ATCC 9226) is reported for both acetate- and zinc-limited cultures in defined media. Acetate concentrations were varied from suboptimal to inhibitory levels in both types of media in differential shake flask culture and in batch and continuous cultures in stirred fermentors. Transient responses of steady-state cultures to small or large additions of concentrated sodium acetate, or to shifts in dilution rate or inlet acetate concentration are compared with one another and with simple mathematical models of growth and acetate metabolism. Exponential growth was observed during unrestricted growth (differential shake flask and batch cultures) with both types of media. Addition of acetate during unrestricted growth always caused lags and for larger pulses, lower specific growth rates were observed after exponential growth resumed. Inhibition by high acetate concentrations was much greater in acetate–limited than in zinc–limited cultures. During restricted growth (steady-state, continuous cultures), high acetate concentrations again consistently caused growth lags but stimulated, inhibited, or temporarily stopped acetage uptake. Qualitative agreement between the predictions of a simple mathematical model of acetate inhibition fitted to differential shake flask data and the observed transient data was surprisingly good.  相似文献   

11.
Abstract: The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h−1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from non-limiting amounts (1.6 mol O2 per mol sulfide, resulting in sulfide limitation) to severe limitation (0.65 mol O2 per mol sulfide). Under sulfide limitation Thiocapsa was competitively excluded by Thiobacillus and washed out. Oxygen/sulfide ratios between 0.65 and 1.6 resulted in stable coexistence. It could be deduced that virtually all sulfide was oxidized by Thiobacillus . The present experiments showed that Thiocapsa is able to grow phototrophically on the partially oxidized products of Thiobacillus . In pure Thiobacillus cultures in steady state extracellular zerovalent sulfur accumulated, in contrast to mixed cultures. This suggests that a soluble form of sulfur at the oxidation state of elemental sulfur is formed by Thiobacillus as intermediate. As a result, under oxygen limitation colorless sulfur bacteria and purple sulfur bacteria do not competitively exclude each other but can coexist. It was shown that its ability to use partially oxidized sulfur compounds, formed under oxygen limiting conditions by Thiobacillus , helps explain the bloom formation of Thiocapsa in marine microbial mats.  相似文献   

12.
Competition experiments between Chromatium vinosum and Chlorobium limicola in sulfide-limited continuous culture under photolithoautotrophic conditions resulted in the coexistence of both organisms. The ratio between the two bacteria was dilution-rate as well as pH dependent. The observed coexistence can be explained as a hitherto not reported form of dual substrate limitation. The two substrates involved are the electron donors sulfide (growth-limiting substrate in the reservoir vessel) and extracellular elemental sulfur (formed by Chlorobium as a result of sulfide oxidation). It is argued that, although Chlorobium may have the better affinity for both substrates involved, Chromatium can compete successfully on the basis of its intracellular storage of sulfur. Ecological implication of the observed coexistence with respect to natural blooms are discussed.  相似文献   

13.
Beggiatoa alba strain B18LD was grown in continuous culture under heterotrophic conditions on acetate or acetate and asparagine and under mixotrophic conditions on acetate plus either 1 mM sodium sulfide or 1 mM sodium thiosulfate. Considerable differences were observed between the yields and the cell compositions of heterotrophic and mixotrophic cultures at all dilution rates tested. The dry weight yield per gram acetate utilized was approximately three times higher in the acetate-sulfide mixotrophic culture than in the acetate heterotrophic culture, whereas the poly--hydroxybutyric acid and carbohydrate contents were much higher in the heterotrophic cultures. The high yields (0.52–0.75, corrected for the weight of the sulfur) obtained with the mixotrophic cultures imply that the acetate was utilized mainly for biosynthesis. Thus, the oxidation of sulfide supplied energy. The addition of catalase to the chemostat cultures increased yields slightly, but it was insufficient to explain the differences between the heterotrophic and the mixotrophic cultures.  相似文献   

14.
Sulfur isotope fractionation during reduction of thiosulfate was investigated with growing batch cultures of Desulfovibrio desulfuricans CSN (DSM 9104) at 30 °C. The sulfide produced was depleted in 34S by 10‰ as compared to total thiosulfate sulfur. The depletion was equal to that during sulfate reduction under similar conditions. The two sulfur atoms of the thiosulfate molecule were affected differently by fractionation. Sulfide produced from sulfonate sulfur was depleted by 15.4‰, sulfide produced from sulfane sulfur by 5.0‰. Received: 29 October 1997 / Accepted: 18 December 1997  相似文献   

15.
We previously demonstrated that periodic H2S production during aerobic continuous culture of Saccharomyces cerevisiae resulted in ultradian respiratory oscillation, and that H2S production was dependent on the activity of sulfate uptake and the level of sulfite. To investigate the mechanism of regulation of the sulfate assimilation pathway and of respiratory oscillation, several amino acids were pulse-injected into cultures during respiratory oscillation. Injection of sulfur amino acids or their derivatives perturbed respiratory oscillation, with changes in the H2S production profile. Four major regulators of H2S production in the sulfate assimilation pathway and respiratory oscillation were identified: (1) O-acetylhomoserine, not O-acetylserine, as a sulfide acceptor, (2) homoserine/threonine as a regulator of O-acetylhomoserine supply, (3) methionine/S-adenosyl methionine as a negative regulator of sulfate assimilation, and (4) cysteine (or its derivatives) as an essential regulator. The results obtained after the addition of DL-propargylglycine (5 microM and 100 microM) and cystathionine (50 microM) suggested that the intracellular cysteine level and cystathionine gamma-lyase, rather than methionine/S-adenosylmethionine, play an essential role in the regulation of sulfate assimilation and respiratory oscillation. Based on these results and those of our previous reports, we propose that periodic depletion of cysteine (or its derivatives), which is involved in the detoxification of toxic materials originating from respiration, causes periodic H2S production.  相似文献   

16.
The spent caustic wastewater from the oxidation of sulfide present in offshore natural gas production mainly comprises thiosulfate and sulfate. A biocatalytic process, employing phototrophic green sulfur bacteria in symbiosis with sulfate-reducing bacteria, is described in this paper for the production of sulfur from the spent caustic wastewater, with synthetic wastewater as the model system. The process entails the conversion of thiosulfate to sulfur and sulfate by photosynthetic green sulfur bacteria Chlorobium vibrioforme f. thiosulfatophilum. Sulfate formed in turn is removed by Desulfovibrio desulfuricans to sulfide, which is further converted to sulfur by Chlorobium limicola through photooxidation. Sulfide is also oxidized to sulfur and sulfate via thiosulfate as an intermediate by Chlorobium vibrioforme f. thiosulfatophilum.  相似文献   

17.
Abstract Sulfate uptake was investigated with four species of phototrophic sulfur bacteria. Rhodobacter sulfidophilus and Chromatium vinosum took up 35S-labeled sulfate added in micromolar concentrations. Sulfate uptake by C. vinosum was expressed only under sulfate starvation. R. sulfidophilus took up 10 μM sulfate almost completely and accumulated it up to 5300-fold, also when grown with excess sulfate. Sulfite (1 mM) as an intermediate of sulfate assimilation inhibited sulfate uptake completely within 1 min. Moderate inhibition was observed with cysteine (1 mM) and none with sulfide (1 mM). Transport was not dependent on the cations K+, Na+, Li+ or protons, but was sensitive to uncouplers and to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). The accumulation of sulfate correlated with the ATP concentration in the cells, indicating an ATP-dependent uptake mechanism.  相似文献   

18.
Average cell volume and cell buoyant density of Chromatium vinosum DSM 185 growing in sulfide limited continuous cultures, were found to increase with increasing dilution rate. It was found that the increase in buoyant density was mainly a consequence of the accumulation of elemental sulfur. The contribution of other compounds such as protein, bacteriochlorophyll a and glycogen, was almost negligible. It was concluded that the sulfur globule is constituted by at least two fractions, sulfur and an unidentified moiety with a density lower than that of sulfur, probably water.A model was developed to explain the relation between the specific content of sulfur and cell buoyant density. The model also predicts the impact of elemental sulfur on the volume of the cell. It was found that in addition to the accumulation of sulfur the average cell volume also changes with the specific growth rate.In shift-up experiments (sulfur accumulation) the actual phenomena agreed with those predicted by the model, however, this was not so during shift-down (sulfur depletion). It is suggested that this difference is due to the fact that during the shift-down, elemental sulfur and the unidentified moiety are being depleted at different rates.Non-standard abbreviations BChl bacteriochlorophyll - PHB poly--hydroxybutyric acid - D dilution rate - specific growth rate - S R reservoir concentration of limiting substrate  相似文献   

19.
Abstract The affinities for sulfide and acetate under mixotrophic conditions have been determined for the brown Chlorobium phaeobacteroides and the purple Thiocapsa roseopersicina isolated from a bloom in Lake Kinneret (Israel) at a depth of about 18 m. C. phaeobacteroides exhibited a far higher affinity for sulfide than T. roseopersicina . For acetate, the opposite was observed.
In light-limited continuous cultures, C. phaeobacteroides preferentially used sulfide, whereas in mixotrophic cultures of T. roseopersicina sulfide could be detected without detectable acetate. Competition experiments under increasingly severe light limitation resulted in co-existence of the two strains. Relatively high light intensities resulted in a dominance of T. roseopersicina over C. phaeobacteroides , whereas at lower intensities C. phaeobacteroides became dominant. However, at light intensities below 2 μEin · m−2· s−1, T. roseopersicina was completely excluded.
At low light intensities, C. phaeobacteroides is able to grow at a much higher rate than T. roseopersicina . The maintenance rate constant μe of C. phaeobacteroides is −0.001 h−1, whereas that of T. roseopersicina is −0.011 h−1. However, high light intensities inhibit the growth rate of C. phaeobacteroides , but not that of T. roseopersicina .
The explanation of the high numbers of C. phaeobacteroides in Lake Kinneret appears to be the combination of low light intensities and low sulfide concentrations. As a result, the incorporation of acetate is enhanced. The low numbers of T. roseopersicina can be explained by the high maintenance energy requirements of this organism, which exceed the available light at the depth of the bloom.  相似文献   

20.
Chlorobium is an autotrophic, green phototrophic bacterium which uses reduced sulfur compounds to fix carbon dioxide in the light. The pathways for the oxidation of sulfide, sulfur, and thiosulfate have not been characterized with certainty for any species of bacteria. However, soluble cytochrome c-551 and flavocytochrome c (FCSD) have previously been implicated in the oxidation of thiosulfate and sulfide on the basis of enzyme assays in Chlorobium. We have now made a number of observations relating to the oxidation of reduced sulfur compounds. (1) Western analysis shows that soluble cytochrome c-551 in Chlorobium limicola is regulated by thiosulfate, consistent with a role in the utilization of thiosulfate. (2) A membrane-bound flavocytochrome c-sulfide dehydrogenase (which is normally a soluble protein in other species) is constitutive and not regulated by sulfide as expected for an obligately autotrophic species dependent upon sulfide. (3) We have cloned the cytochrome c-551 gene from C. limicola and have found seven other genes, which are also presumably involved in sulfur metabolism and located near that for cytochrome c-551 (SoxA). These include genes for a flavocytochrome c flavoprotein homologue (SoxF2), a nucleotidase homologue (SoxB), four small proteins (including SoxX, SoxY, and SoxZ), and a thiol-disulfide interchange protein homologue (SoxW). (4) We have established that the constitutively expressed FCSD genes (soxEF1) are located elsewhere in the genome. (5) Through a database search, we have found that the eight thiosulfate utilization genes are clustered in the same order in the Chlorobium tepidum genome (www.tigr.org). Similar thiosulfate utilization gene clusters occur in at least six other bacterial species but may additionally include genes for rhodanese and sulfite dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号