首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical, chemical, and regulatory properties of glycolate oxidase (GO) isolated from the leaves of C4 and C3 plants (Zea mays L., cv. Voronezhskaya 76 and Glycine max (L.) Merr., cv. Pripyat’, respectively) were studied. The homogenous preparations were obtained by multistage enzyme purification from soybean leaves and maize mesophyll and bundle sheath. The glycolate oxidase (GO) preparations obtained consisted of two types of subunits, 37 and 44 kD. The GO isolated from C3 plant leaves had many in common with that extracted from C4 plant bundle sheath as regards physical, chemical, and catalytic properties. The primary function of GO in both plant types is metabolism of glycolate, which is a product of ribulosebisphosphate oxalacetic acid oxidation and is used by plants for biosynthesis of hydrocarbons and amino acids.  相似文献   

2.
When leaf discs of Xanthium strumarium L. and Salvia splendens L. are incubated in sealed flasks in the light, more C2H4 gas is released in the presence of added CO2 (30-200 millimolar NaHCO3) than without CO2. In Salvia, the maximum rate of C2H4 release occurs when sufficient CO2 (above 125 millimolar NaHCO3) is added to saturate photosynthesis confirming previous studies. The maximum rate of C2H4 release from illuminated discs is similar to the rate in the dark with or without CO2 in both species. Glycolate enhances a CO2-dependent C2H4 evolution from illuminated leaf discs. However, the maximum rate of C2H4 release with glycolate is the same as that observed with saturating CO2. When photosynthesis is inhibited by darkness or by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, glycolate has no effect.

Studies with [2,3-14C]-1-aminocyclopropane-1-carboxylic acid (ACC) show that the pattern of C2H4 release and the specific activity of the 14C2H4 in the presence and absence of glycolate is similar to that described above, indicating that glycolate does not alter uptake of the exogenously supplied precursor (ACC) or stimulate C2H4 release from an endogenous source at appreciable rates. Glycolate oxidase in vitro generates H2O2 which stimulates a slow breakdown of ACC to C2H4, but since exogenous glycolate is oxidized to CO2 in both the light and the dark it is argued that the glycolate-dependent increase in C2H4 release from illuminated leaf discs is not mediated directly by the action of enzymes of glycolate catabolism. The effects of glycolate and CO2 are not easily explained by changes in stomatal resistance. The data support the view that glycolate decarboxylation at subsaturating levels of CO2 in the light stimulates C2H4 release by raising the CO2 level in the tissue.

  相似文献   

3.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

4.
Predatory beetles are an important component of the natural enemy complex that preys on insect pests such as aphids within agroecosystems. Tracing diet origins and movement of natural enemies aids understanding their role in the food web and informs strategies for their effective conservation. Field sampling and laboratory experiments were carried out to examine the changes of carbon and nitrogen stable isotope ratios (δ13C and δ15N) among crops (cotton and maize), pests (cotton and maize aphids), and between wing and abdomen of predatory beetles, Propylea japonica, and to test the hypothesis that prey origins, proportions and feeding periods of the predatory beetles can be deduced by this stable isotope analysis. Results showed that the δ13C values both in wing and abdomen of adult P. japonica were changing from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively; the isotope ratio of their new C4 substrates were detectable within 7 days and the δ15N values began to reflect their new C4 substrates within 3 days. The relationship between δ13C and δ15N values of P. japonica adults in wing or abdomen and diets of aphids from a C3-based resource transitioning to a C4-based resource were described best in linear or quadratic equations. Results suggest that integrative analysis of δ13C and δ15N values can be regarded as a useful method for quantifying to trace prey origins, proportions of diets and feeding periods of natural enemies. The results can provide quantifying techniques for habitat management of natural enemies.  相似文献   

5.
Methods to trace source habitats and movement of parasitic natural enemies in agroecosystems are limited. This study demonstrates that stable carbon isotope analysis offers a valuable new method for revealing the movement of Microplitis mediator (Haliday) (Hymenoptera: Braconidae), a larval endoparasitoid of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), between C3 and C4 plants. Results indicate that M. mediator with δ13C values of lower than −22‰ originate from a C3 plant, whereas those with δ13C values of higher than −19‰ develop on a C4 plant.  相似文献   

6.
We studied the plant resource use between and within populations of desert tortoise (Gopherus agassizii) across a precipitation gradient in the Sonoran Desert of Arizona. The carbon and nitrogen stable isotope values in animal tissues are a reflection of the carbon and nitrogen isotope values in diet, and consequently represent a powerful tool to study animal feeding ecology. We measured the δ13C and δ15N values in the growth rings on the shells of tortoises in different populations to characterize dietary specialization and track tortoise use of isotopically distinct C4/CAM versus C3 plant resources. Plants using C3 photosynthesis are generally more nutritious than C4 plants and these trait differences can have important growth and fitness consequences for consumers. We found that dietary specialization decreases in successively drier and less vegetated sites, and that broader population niche widths are accompanied by an increase in the dietary variability between individuals. Our results highlight how individual consumer plant resource use is bounded under a varying regime of precipitation and plant productivity, lending insight into how intra-individual dietary specialization varies over a spatial scale of environmental variability.  相似文献   

7.
Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) is a serious worldwide pest of stored cereal grains that also has the ability to breed in non‐agricultural host plant material. Stable isotope signatures (concentrations of isotopes) were used as internal tissue markers to determine dietary differences among adult R. dominica and to make inferences about source habitats of field‐trapped insects. Adult R. dominica collected near granaries or from non‐agricultural forested sites near Stillwater, OK, USA, and insects reared on selected hosts under laboratory conditions were studied to determine the carbon and nitrogen isotope signatures. Laboratory‐reared R. dominica showed δ13C (stable isotope ratio of carbon) values similar to the host on which they developed with an enrichment of about 1 in the insect body. Insects reared on seeds of wheat and oak, which have C3 photosynthetic pathways, showed much depleted δ13C values (–23.7 and –26.2, respectively) in comparison to insects reared on seeds of corn, a C4 photosynthetic plant (–11.3). A majority of the field‐collected R. dominica showed δ13C values similar to expectations for a C3 host. However, a few field‐collected insects had δ13C signatures similar to the C4 plant‐reared insects in the laboratory experiment. Stored grain of C4 crops were lacking at many of the sample field sites. These results suggest that R. dominica occurs on either C3‐ or C4‐based hosts in the field, and point to utilization of non‐grain C4 plants as hosts. Our studies indicated that 13C isotope is a reliable marker to infer types of hosts used in the feeding history of R. dominica.  相似文献   

8.
Lerman JC 《Plant physiology》1974,53(4):581-584
The content of 13C varies in plants with Crassulacean acid metabolism. Differences up to 3.5‰ in the 13C/12C ratios were observed between leaves of different age in the same plant of Bryophyllum daigremontianum. Soluble and insoluble carbon in the same leaf differed up to 8‰, the largest difference occurring in the leaves with the highest Crassulacean acid metabolism activity. Models to account for the isotope discrimination by C3, C4, and Crassulacean acid metabolism plants are proposed.  相似文献   

9.
Cyclooxygenase catalysis by prostaglandin H synthase (PGHS) is thought to involve a multistep mechanism with several radical intermediates. The proposed mechanism begins with the transfer of the C13 pro-(S) hydrogen atom from the substrate arachidonic acid (AA) to the Tyr385 radical in PGHS, followed by oxygen insertion and several bond rearrangements. The importance of the hydrogen-transfer step to controlling the overall kinetics of cyclooxygenase catalysis has not been directly examined. We quantified the non-competitive primary kinetic isotope effect (KIE) for both PGHS-1 and -2 using several deuterated AAs, including 13-pro-(S) d-AA, 13,13-d2-AA and 10, 10, 13,13-d4-AA. The primary KIE for steady-state cyclooxygenase catalysis, Dkcat, ranged between 1.8 and 2.3 in oxygen electrode measurements. The intrinsic KIE of AA radical formation by C13 pro-(S) hydrogen abstraction in PGHS-1 was estimated to be 1.9-2.3 using rapid freeze-quench EPR kinetic analysis of anaerobic reactions and computer modeling to a mechanism that includes a slow formation of a pentadienyl AA radical and a rapid equilibration of the AA radical with a tyrosyl radical, NS1c. The observation of similar values for steady-state and pre-steady state KIEs suggests that hydrogen abstraction is a rate-limiting step in cyclooxygenase catalysis. The large difference of the observed KIE from that of plant lipoxygenases indicates that PGHS and lipoxygenases have very different mechanisms of hydrogen transfer.  相似文献   

10.
Glycolate oxidase (GO; EC 1.1.3.1) was purified from the leaves of three plant species:Amaranthus hypochondriacus L.(NAD-ME type C4 dicot),Pisum sativum L. (C3 species) andParthenium hysterophorus L. (C3–C4. intermediate). A flavin moiety was present in the enzyme from all the three species. The enzyme from the C4 plant had a low specific activity, exhibited lower KM for glycolate, and required a lower pH for maximal activity, compared to the C3 enzyme. The enzyme from the C4 species oxidized glyoxylate at <10% of the rate with glycolate, while the GO from the C3 plant oxidized glyoxylate at a rate of about 35 to 40% of that with glycolate. The sensitivity of GO from C4 plant to -hydroxypyridinemethane sulfonate, 2-hydroxy-3-butynoate and other inhibitors was less than that of the enzyme from C3 source. The properties of GO fromParthenium hysterophorus, were similar to those of the enzyme fromPisum sativum. The characteristics of glycolate oxidase from leaves of a C4 plant,Amaranthus hypochondriacus are different from those of the C3 species or the C3–C4 intermediate.  相似文献   

11.
The flowers of 23 species of grass and herb plants were collected from a mesotrophic grassland to assess natural variability in bulk, monosaccharide and fatty acid δ13C values from one plant community and were compared with previous analyses of leaves from the same species. The total mean bulk δ13C value of flower tissues was −28.1‰, and there was no significant difference between the mean δ13Cflower values for grass (−27.8‰) and herb (−28.2‰) species. On average bulk δ13Cflower values were 1.1‰ higher than bulk δ13Cleaf values, however, the δ13Cflower and δ13Cleaf values of grasses did not differ between organs suggesting that carbon isotope discrimination is different in grass and herb species. The abundance of different monosaccharides abundance varied between plant types, i.e. xylose concentrations in the grass flowers were as high as 40%, compared with up to 15% in the herb species, but the general relationship δ13Carabinose > δ13Cxylose > δ13Cglucose > δ13Cgalactose which had been observed in leaves was similar in flowers (total mean δ13C values = −25.9‰, −27.2‰, −28.8‰ and −28.1‰, respectively). However, the average 5.4‰ depletion in the δ13C values of the C16:0, C18:2 and C18:3 fatty acids in flowers compared to bulk tissue was significantly greater than observed for leaves. The trend C16:0 < C18:2 < C18:3 previously observed in leaves was also observed in grass flowers (δ13CC16:0 = −33.8‰; δ13CC18:2 = −33.1‰; δ13CC18:3 = −34.2‰) but not herb flowers (δ13CC16:0 = −34.1‰; δ13CC18:2 = −32.4‰; δ13CC18:3 = −34.5‰). We conclude: (i) that the biological processes influencing carbon isotope discrimination in grass flowers are different from herbs flowers; and, (ii) that a range of post-photosynthetic fractionation effects caused the observed differences between flower and leaf δ13C values, especially the significant 13C-depletion in flower fatty acid δ13C values.  相似文献   

12.
The relative carbon isotope content (δ13C value) in each position of glucose from a C4 plant (maize starch) and a C3 plant (sugar beet sucrose) has been determined by stepwise chemical and biochemical degradation of the molecule and stable isotope ratio measurement of the fragments. The suitability of the degradation methods has been tested through their chemical yield and isotope balance. The results from both methods agreed perfectly, revealing a defined and reproducible 13C distribution in glucose from both origins. Most prominent was a relative 13C enrichment by 5 to 6 δ-units in position 4 and a depletion by about 5 δ-units in carbon 6. As possible reasons for these nonstatistical isotope distributions, isotope effects of the aldolase, the triose phosphate isomerase, and the transketolase reactions during carbohydrate biosynthesis are discussed. The practical importance of the results in regard to isotope distributions in secondary plant products as a means for food authenticity control is outlined.  相似文献   

13.
A method was devised to quantify short-term photorespiratory rates in terrestrial plants using 18O-intermediates of the glycolate pathway, specifically glycolate, glycine, and serine. The pathway intermediates were isolated and analyzed on a GC/MS to determine molecular percent 18O-enrichment. Rates of glycolate synthesis were determined from 18O-labeling kinetics of the intermediates, derived rate equations, and nonlinear regression techniques. Glycolate synthesis in wheat (Triticum aestivum L.), a C3 plant, and maize (Zea mays L.), a C4 plant, was stimulated by high O2 concentrations and inhibited by high CO2 concentrations. The synthesis rates were 7.3, 2.1, and 0.7 micromoles per square decimeter per minute under a 21% O2 and 0.035% CO2 atmosphere for leaf tissue of wheat, maize seedlings, and 3-month-old maize, respectively. Photorespiratory CO2 evolution rates were estimated to be 27, 6, and 2%, respectively, of net photosynthesis for the three groups of plants under the above atmosphere. The results from maize tissue support the hypothesis that C4 plants photorespire, albeit at a reduced rate in comparison to C3 plants, and that the CO2/O2 ratio in the bundle sheath of maize is higher in mature tissue than in seedling tissue. The pool size of the three photorespiratory intermediates remained constant and were unaffected by changes in either CO2 or O2 concentrations throughout the 10-minute labeling period. This suggests that photorespiratory metabolism is regulated by other mechanism besides phosphoglycolate synthesis by ribulose-1,5-bisphosphate carboxylase/oxygenase, at least under short-term conditions. Other mechanisms could be alternate modes of synthesis of the intermediates, regulation of some of the enzymes of the photorespiratory pathway, or regulation of carbon flow between organelles involved in photorespiration. The glycolate pool became nearly 100% 18O-labeled under an atmosphere of 40% O2. This pool failed to become 100% 18O-enriched under lower O2 concentrations.  相似文献   

14.
The metabolic pathway by which L-[14C1]phenylalanine, L-[14C1]tyrosine, L-[14C1]tryptophan, and L-[14C1]ascorbic acid are converted to [14C]oxalate have been investigated in the male rate. Only [14C]oxalate was detected in the urine of rats injected with L-[14C1]ascorbic acid, but [14C]-labeled oxalate, glycolate, glyoxylate, glycolaldehyde, glycine, and serine were recovered from the [14C1]-labeled aromatic amino acids. DL-Phenyllactate, an inhibitor of glycolic acid oxidase and glycolic acid dehydrogenase, reduced the amount of [14C]oxalate recovered in the urine of rats given the [14C1]-labeled aromatic amino acids, but increased the amount of [14C]glycolate formed from L-[14C1]-phenylalanine and L-[14C1]tyrosine and the amount of [14C]glycolate produced from [14C1]tryptophan. Based on the [14C]labeled intermediates identified and the relative distribution of the radioactivity, it is postulated that phenylalanine and tyrosine are converted to oxalate via glycolate which is oxidized directly to oxalate by glycolic acid dehydrogenase. Tryptophan is metabolized via glyxylate which is oxidized directly to oxalate by glycolic acid oxidase. Neither glycolate, glyoxylate, glycolic acid oxidase or glycolic acid dehydrogenase are involved in the formation of oxalate from ascorbic acid.  相似文献   

15.
When glycolate was metabolized in peroxisomes isolated from leaves of spinach beet (Beta vulgaris L., var. vulgaris) formate was produced. Although the reaction mixture contained glutamate to facilitate conversion of glycolate to glycine, the rate at which H2O2 became “available” during the oxidation of [1-14C]glycolate was sufficient to account for the breakdown of the intermediate [1-14C]glyoxylate to formate (C1 unit) and 14CO2. Under aerobic conditions formate production closely paralleled 14CO2 release from [1-14C]glycolate which was optimal between pH 8.0 and pH 9.0 and was increased 3-fold when the temperature was raised from 25 to 35 C, or when the rate of H2O2 production was increased artificially by addition of an active preparation of fungal glucose oxidase.  相似文献   

16.
Stable carbon isotope signatures are often used as tracers for environmentally driven changes in photosynthetic δ13C discrimination. However, carbon isotope signatures downstream from carboxylation by Rubisco are altered within metabolic pathways, transport and respiratory processes, leading to differences in δ13C between carbon pools along the plant axis and in respired CO2. Little is known about the within-plant variation in δ13C under different environmental conditions or between species. We analyzed spatial, diurnal, and environmental variations in δ13C of water soluble organic matter (δ13CWSOM) of leaves, phloem and roots, as well as dark-respired δ13CO213Cres) in leaves and roots. We selected distinct light environments (forest understory and an open area), seasons (Mediterranean spring and summer drought) and three functionally distinct understory species (two native shrubs—Halimium halimifolium and Rosmarinus officinalis—and a woody invader—Acacia longifolia). Spatial patterns in δ13CWSOM along the plant vertical axis and between respired δ13CO2 and its putative substrate were clearly species specific and the most δ13C-enriched and depleted values were found in δ13C of leaf dark-respired CO2 and phloem sugars, ~?15 and ~?33 ‰, respectively. Comparisons between study sites and seasons revealed that spatial and diurnal patterns were influenced by environmental conditions. Within a species, phloem δ13CWSOM and δ13Cres varied by up to 4 ‰ between seasons and sites. Thus, careful characterization of the magnitude and environmental dependence of apparent post-carboxylation fractionation is needed when using δ13C signatures to trace changes in photosynthetic discrimination.  相似文献   

17.
Experiments in which [1-14C]glycolate uptake is carried out in conjunction with measurements of stromal pH indicate that only glycolic acid and not the glycolate anion is crossing the pea (Pisum sativum var. Progress No. 9, Agway) chloroplast envelope. This mechanism of glycolate transport appears to be too slow to account for observed photorespiratory carbon fluxes in C3 plants.  相似文献   

18.
Biao Zhu  Weixin Cheng 《Plant and Soil》2011,342(1-2):277-287
Stable carbon isotopes are used extensively to partition total soil CO2 efflux into root-derived rhizosphere respiration or autotrophic respiration and soil-derived heterotrophic respiration. However, it remains unclear whether CO2 from rhizosphere respiration has the same δ13C value as root biomass. Here we investigated the magnitude of 13C isotope fractionation during rhizosphere respiration relative to root biomass in six plant species. Plants were grown in a carbon-free sand-perlite medium inoculated with microorganisms from a farm soil for 62 days inside a greenhouse. We measured the δ13C value of rhizosphere respiration using a closed-circulation 48-hour CO2 trapping method during 40~42 and 60~62 days after sowing. We found a consistent depletion in 13C (0.9~1.7‰) of CO2 from rhizosphere respiration relative to root biomass in three C3 species (Glycine max L. Merr., Helianthus annuus L. and Triticum aestivum L.), but a relatively large depletion in 13C (3.7~7.0‰) in three C4 species (Amaranthus tricolor L., Sorghum bicolor (L.) Moench and Zea mays L. ssp. mays). Overall, our results indicate that CO2 from rhizosphere respiration is more 13C-depleted than root biomass. Therefore, accounting for this 13C fractionation is required for accurately partitioning total soil CO2 efflux into root-derived and soil-derived components using natural abundance stable carbon isotope methods.  相似文献   

19.
As a boy, I read Sinclair Lewis's Arrowsmithand dreamed of doing research of potential benefit to society. I describe the paths of my scientific career that followed. Several distinguished scientists served as my mentors and I present their profiles. Much of my career was in a small department at a small institution where independent researchers collaborated informally. I describe the unique method of carrying on research there. My curiosity about glycolate metabolism led to unraveling the enzymatic mechanism of the glycolate oxidase reaction and showing the importance of H2O2 as a byproduct. I discovered enzymes catalyzing the reduction of glyoxylate and hydroxypyruvate. I found α-hydroxysulfonates were useful competitive inhibitors of glycolate oxidase. In a moment of revelation, I realized that glycolate metabolism was an essential part of photorespiration, a process that lowers net photosynthesis in C3 plants. I added inhibitors of glycolate oxidase to leaves and showed: (1) glycolate was synthesized only in light as an early product of photosynthetic CO2 assimilation, (2) the rate of glycolate oxidation consumed a sizable fraction of net photosynthesis in C3 but not in C4 plants, and (3) that glycolate metabolism increased greatly at higher temperatures. For a while I studied the control of stomatal opening in leaves, and this led to the finding that potassium ions are a key solute in guard cells. I describe experiments that show that when photorespiration rates are high, as occurs at higher temperatures, genetically increasing leaf catalase activity reduces photorespiration and increases net photosythetic CO2 assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Stable carbon isotope analyses of vertebrate hard tissues such as bones, teeth, and tusks provide information about animal diets in ecological, archeological, and paleontological contexts. There is debate about how carbon isotope compositions of collagen and apatite carbonate differ in terms of their relationship to diet, and to each other. We evaluated relationships between δ13Ccollagen and δ13Ccarbonate among free‐ranging southern African mammals to test predictions about the influences of dietary and physiological differences between species. Whereas the slopes of δ13Ccollagen–δ13Ccarbonate relationships among carnivores are ≤1, herbivore δ13Ccollagen increases with increasing dietary δ13C at a slower rate than does δ13Ccarbonate, resulting in regression slopes >1. This outcome is consistent with predictions that herbivore δ13Ccollagen is biased against low protein diet components (13C‐enriched C4 grasses in these environments), and δ13Ccarbonate is 13C‐enriched due to release of 13C‐depleted methane as a by‐product of microbial fermentation in the digestive tract. As methane emission is constrained by plant secondary metabolites in browse, the latter effect becomes more pronounced with higher levels of C4 grass in the diet. Increases in δ13Ccarbonate are also larger in ruminants than nonruminants. Accordingly, we show that Δ13Ccollagencarbonate spacing is not constant within herbivores, but increases by up to 5 ‰ across species with different diets and physiologies. Such large variation, often assumed to be negligible within trophic levels, clearly cannot be ignored in carbon isotope‐based diet reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号